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Abstract 24 

Manipulation of complex objects as in tool use is ubiquitous and has given humans an evolutionary 25 

advantage. This study examined the strategies humans choose when manipulating an object with 26 

underactuated internal dynamics, such as a cup of coffee. The object’s dynamics renders the temporal 27 

evolution complex, possibly even chaotic, and difficult to predict. A cart-and-pendulum model, loosely 28 

mimicking coffee sloshing in a cup, was implemented in a virtual environment with a haptic interface. 29 

Participants rhythmically manipulated the virtual cup containing a rolling ball; they could choose the 30 

oscillation frequency, while the amplitude was prescribed. Three hypotheses were tested: 1) humans 31 

decrease interaction forces between hand and object; 2) humans increase the predictability of the object 32 

dynamics; 3) humans exploit the resonances of the coupled object-hand system. Analysis revealed that 33 

humans chose either a high-frequency strategy with anti-phase cup-and-ball movements or a low-34 

frequency strategy with in-phase cup-and-ball movements. Counter Hypothesis 1, they did not decrease 35 

interaction force; instead, they increased the predictability of the interaction dynamics, quantified by 36 

mutual information, supporting Hypothesis 2. To address Hypothesis 3, frequency analysis of the 37 

coupled hand-object system revealed two resonance frequencies separated by an anti-resonance 38 

frequency. The low-frequency strategy exploited one resonance, while the high-frequency strategy 39 

afforded more choice, consistent with the frequency response of the coupled system; both strategies 40 

avoided the anti-resonance. Hence, humans did not prioritize small interaction force, but rather 41 

strategies that rendered interactions predictable. These findings highlight that physical interactions with 42 

complex objects pose control challenges not present in unconstrained movements.  43 

 44 

Key Words: motor skill, rhythmic movements, object manipulation, prediction, interaction force, 45 

impedance   46 
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New and Noteworthy 47 

Daily actions involve manipulation of complex non-rigid objects which presents a challenge since 48 

humans have no direct control of the whole object. We used a virtual-reality experiment and 49 

simulations of a cart-and-pendulum system coupled to hand movements with impedance to analyze the 50 

manipulation of this underactuated object. We showed that participants developed strategies that 51 

increased the predictability of the object behavior by exploiting the object’s resonance structure, but 52 

did not minimize the hand-object interaction force.  53 
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Introduction 54 

Using tools has been essential in human evolution, and a large variety of tools now enhance and 55 

augment our daily actions. Tool-supported actions range from the simple swinging of a hammer and 56 

cutting meat with a knife to more complex or exotic actions, such as eating spaghetti and cracking a 57 

whip. The latter tasks are challenging and require practice because the objects themselves, spaghetti 58 

and whip, are flexible hence underactuated, i.e. have internal degrees of freedom that are not directly 59 

controlled by the user. Another seemingly mundane example is carrying a cup of coffee: the human 60 

manipulates the cup that, in turn, exerts a force on the coffee that exerts forces back on the cup and the 61 

hand. Complex interaction forces arise between the hand, the cup and the coffee. Despite this 62 

complexity, humans are extremely skilled at interacting with such underactuated objects. Our 63 

understanding of how humans achieve such dexterity is still limited and becomes an ever-growing 64 

barrier to current developments in prosthesis control, brain-machine interfaces and robotic 65 

rehabilitation. 66 

 67 

Despite the abundant literature on the control of goal-directed upper-limb movements, most studies 68 

have focused on free movements without physical interaction, such as reaching and pointing (Flash and 69 

Hogan 1985; Bhushan and Shadmehr 1999; Krakauer et al. 1999; Sabes 2000), or interactions with 70 

rigid objects, such as grasping with isometric grip forces (Flanagan and Wing 1997; Fu and Santello 71 

2014). The control of “complex objects”, which we define as objects with underactuated internal 72 

dynamics, i.e. non-rigid objects, has been largely ignored. The few studies that examined the control of 73 

complex objects have focused on the two classic control models of balancing a pole and manipulating a 74 

linear mass-spring system. For balancing a pole one needs to stabilize an inherently unstable inverted 75 

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (155.033.198.119) on June 5, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



Maurice et al. : Predictability, Force and (Anti-)Resonance    5 

 

 

pendulum. Based on kinematic measurements and mathematical modeling, different mechanisms have 76 

been suggested, such as intermittent, continuous or predictive control, with forward or inverse models 77 

(Mehta and Schaal 2002; Gawthrop et al. 2013; Insperger et al. 2013). Another set of studies on the 78 

inverted pendulum system focused on noise and delays to distinguish between the continuous vs. 79 

intermittent nature of control (Cluff et al. 2009; Milton 2011; Milton et al. 2013). A linear mass-spring 80 

system has served as a model to examine optimization criteria in human control, such as generalized 81 

kinematic smoothness (Dingwell et al. 2014), effort and accuracy (Nagengast et al. 2009), or minimum 82 

acceleration with constraints on the center of mass (Leib et al. 2012). Two studies compared the 83 

contributions of visual and haptic feedback and their results highlighted the essential role of haptic 84 

feedback over visual feedback in controlling the object (Huang et al. 2007; Danion et al. 2012). Lastly, 85 

another set of studies looked at the compression of a buckling spring, modeling the buckling behavior 86 

with a subcritical pitchfork bifurcation of the nonlinear dynamic system, including integration of multi-87 

sensory information with different time delays (Venkadesan et al. 2007; Mosier et al. 2001). 88 

 89 

All these studies examined point-to-point movements, or short sequences of discrete movements, in 90 

which the full complexity of the system’s dynamics may not yet be fully manifest. A more extended 91 

continuous interaction may reveal more of the challenges arising from complex underactuated 92 

dynamics. For instance, when a system is near an anti-resonance frequency, its evolution is very 93 

sensitive to small changes in the input, rendering the system's behavior chaotic, and essentially 94 

unpredictable in the longer term. Such small perturbations readily arise from the fact that human 95 

movements are intrinsically variable. This presents a problem for the widely-held assumption that 96 

humans rely on internal models of the manipulated object to select and execute a movement policy 97 

(Flanagan et al. 2006; Dingwell et al. 2012, Danion et al. 2012). How can humans learn an internal 98 
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model of a complex underactuated object that has a potentially unpredictable temporal evolution? How 99 

can humans control the behavior of such objects? Relying on feedback control is largely insufficient for 100 

the manipulation of objects with complex dynamics due to neural transmission delay. Despite these 101 

challenges, humans skillfully manipulate complex objects of all degrees of complexity. How humans 102 

achieve this is an open question. 103 

 104 

Extending previous work by Sternad and colleagues (Hasson et al. 2012a; Nasseroleslami et al. 2014; 105 

Sternad and Hasson 2016, Bazzi et al. 2018), this paper investigates continuous manipulation of an 106 

underactuated object with nonlinear internal dynamics. The task of moving a bowl-shaped cup with a 107 

ball inside was implemented in a virtual environment, using a cart-and-pendulum model to mimic the 108 

ball rolling in the moving cup. Notably, one of our previous studies demonstrated that the continuous 109 

evolution of this system shows features of deterministic chaos (Nasseroleslami et al. 2014). Using 110 

mathematical modeling and simulation of the task dynamics, this previous study examined the strategy 111 

that humans adopt when manipulating this complex object in continuous rhythmic fashion. Moving at 112 

an imposed frequency, participants chose movement amplitudes that made the interaction easier to 113 

predict. Counter to expectation, interaction force and smoothness were not minimized.  114 

 115 

The present study examined the same task, but extended the question in two ways. First, rather than 116 

imposing a frequency for the oscillatory movement, the present study prescribed the movement 117 

amplitude, leaving frequency free to choose. The task of choosing a frequency gave rise to new 118 

behaviors and new questions, because the resonance structure of the system may now play a significant 119 

role in the choice of strategy. Second, we extended the modeling of human control by including the 120 

mechanical impedance of the hand. The previous study on the same system only considered the 121 
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dynamics of the cart-and-pendulum system (Nasseroleslami et al. 2014). However, the object is in 122 

continuous interaction with the human, whose neuromechanical properties are likely to influence the 123 

cart-and-pendulum dynamics. Therefore, this study introduced a simplified model of hand mechanical 124 

impedance interacting with the cart-and-pendulum system.  125 

 126 

Several studies on unconstrained movements have demonstrated that humans tend to move in a way 127 

that minimizes physical effort (e.g. Alexander 2000; Prilutsky and Zatsiorsky 2002). Extending these 128 

findings to the manipulation of complex underactuated objects, our first hypothesis is that humans seek 129 

to minimize the effort, or specifically the interaction force (Hypothesis 1). We assessed this hypothesis 130 

by quantifying the root-mean-squared value of the interaction force between the object and the hand. 131 

However, while demonstrated for free movements, this principle may become less prominent when the 132 

manipulated object presents additional challenges, specifically when it develops increasingly erratic 133 

behavior that becomes hard or impossible to predict. Therefore, we also tested the hypothesis that 134 

humans adopt strategies that make the hand-object interaction more predictable (Hypothesis 2). When 135 

interactions are predictable it is easier for humans to anticipate the object motion and hence the force 136 

arising from the object’s internal dynamics. Anticipating this “perturbing” force, subjects can directly 137 

generate the appropriate interaction force to achieve the desired movement. Conversely, unpredictable 138 

object behavior requires continuous correction and adaptation of the hand movement, which may be 139 

tiring, both physiologically and cognitively. Predictability of the object dynamics may therefore obviate 140 

computational effort and afford simpler internal models to guide feedforward control. We assessed 141 

predictability by quantifying mutual information between the hand-cup interaction force and the object 142 

kinematics. 143 

 144 
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Addressing Hypotheses 1 and 2 rendered insight into human movement strategies (what do humans 145 

optimize), but they did not inform how humans achieved these strategies. Such explanation required 146 

closer analysis of the object dynamics. Numerous studies on rhythmic movements have provided 147 

evidence that resonance properties of the limbs or the object influence behavior. For example, in 148 

walking, the preferred stepping frequency maps onto the resonance frequency of the leg modeled as a 149 

simple pendulum (Holt et al. 1990). A study of infants in a “jolly jumper” showed that infants tune into 150 

the resonance frequency of the jolly jumper (Goldfield et al. 1993). Rhythmically swinging hand-held 151 

pendulums of different mass and length has demonstrated that humans have a tendency to oscillate at 152 

the natural frequency of the hand-pendulum system (Yu et al. 2003). One main advantage of moving at 153 

the resonance frequency is its energetic efficiency: in oscillatory systems at resonance, the ratio 154 

between the amplitude of the movement output and the force input is maximal. Another feature of 155 

oscillating at resonance has been shown by Goodman et al. (2000) in a study on rhythmic limb 156 

movements. Time series analysis using phase space embedding revealed that the trajectories became 157 

more predictable when oscillating at resonance. However, that study focused on pendular limb 158 

movements, and the applicability of its findings to the manipulation of underactuated objects is unclear. 159 

We therefore tested an additional hypothesis that in complex underactuated object control, humans 160 

exploit the resonance structure of the manipulated object (Hypothesis 3). As the analyses showed, the 161 

manipulated object together with the hand not only had one, but two resonance frequencies separated 162 

by an anti-resonance frequency, a structure that will aid in interpreting the results. 163 

 164 

In the experiment, participants manipulated a virtual cart-and-pendulum system at their preferred 165 

frequency with the movement amplitude prescribed. To evaluate the strategies that humans adopted we 166 

mathematically examined the cart-and-pendulum system coupled to a simple model of hand 167 
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impedance. This model-based analysis allowed us to assess alternative execution strategies, i.e. 168 

different values of frequency and hand impedance that could be used to perform the task. Interaction 169 

forces and the degree of predictability were calculated both experimentally and in simulation. 170 

Comparison of human behavior with the mathematically derived results showed that participants did 171 

not minimize interaction force, but favored strategies with high predictability. In addition, frequency 172 

analysis of the coupled object-hand system showed that the degree of predictability was closely related 173 

to the resonance and anti-resonance frequencies of the system.  174 

 175 

Behavioral Experiment 176 

Participants 177 

Ten young adults with no self-reported neuromuscular pathology volunteered for the experiment (mean 178 

age = 24.3±1.8 yrs). All participants performed the task with their dominant hand. They were naive to 179 

the purpose of the study and gave written informed consent before the experiment. All procedures were 180 

approved by the Northeastern University Institutional Review Board. 181 

 182 

The Virtual Task 183 

To test the three hypotheses, a virtual task mimicking the manipulation of a bowl-shaped cup with a 184 

ball inside was developed. Importantly, this system is underactuated, since moving the cup causes 185 

movements of the ball, which simultaneously exerts forces on the cup: the person moving the cup has 186 

to take into account these indirectly-controlled forces to obtain the desired movement of the cup. A 187 

simplified model of a cup-and-ball was simulated in a virtual environment with visual and haptic 188 

feedback via a robotic manipulandum. Participants were asked to move this virtual cup rhythmically 189 
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between two specified targets, but were allowed to choose their preferred frequency.  190 

 191 

The Mechanical Model  192 

Similar to (Hasson et al. 2012a, 2012b; Nasseroleslami et al. 2014; Sternad and Hasson 2016), the cup-193 

and-ball system was modeled as a ball sliding in a semi-circular cup (Fig 1A). The cup motion was 194 

limited to one direction in the horizontal plane, without any friction. Under the assumption that the ball 195 

does not roll, but only slides without friction between the cup and ball, the cup-and-ball system was 196 

mathematically equivalent to an undamped pendulum attached to a moving cart (Fig 1B). The ball 197 

corresponded to the pendulum bob, the cup’s horizontal position corresponded to the cart position, and 198 

the arc of the cup corresponded to the pendulum’s semi-circular path. With this simple model, the full 199 

dynamics of the task could be computed more easily, without sacrificing the essential elements of the 200 

dynamics: underactuated and nonlinear. 201 

 202 

Fig 1. Model of the task. A: Conceptual model of the cup-and-ball system. B: Mechanical model of 203 

cup-and-ball dynamics as a cart-and-pendulum system. 204 

 205 

Hence, the equations of the cart-and-pendulum motion are 206 

(𝑚𝑐 + 𝑚𝑝) 𝑋̈ = 𝑚𝑝𝑑 [ 𝜃2̇ sin 𝜃 − 𝜃̈ cos 𝜃] + 𝐹𝑖𝑛𝑡𝑒𝑟 = 𝐹𝑏𝑎𝑙𝑙 + 𝐹𝑖𝑛𝑡𝑒𝑟 

𝜃̈ = − 
𝑋̈

𝑑
cos 𝜃 −  

𝑔

𝑑
sin 𝜃                                                        ( 1 ) 207 

where X is the cart position, θ is the pendulum angle, Finter is the force applied by the human on the 208 

cart, and Fball is the force applied by the pendulum (the ball in the conceptual model) on the cart. 209 

Parameters of the system are the mass of the cart mc, mass of the pendulum mp, the pendulum length d, 210 
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and the gravitational acceleration g. The following values were used: mc = 2.40 kg, mp = 0.60 kg, d = 211 

0.45 m. These values were chosen because they rendered resonance and anti-resonance frequencies of 212 

the system that were well within human motor capacities and within reach of participants. The cart and 213 

pendulum masses were chosen to make the object light enough to avoid fatigue. The ratio of cart and 214 

pendulum masses was set to make the underactuated internal dynamics a prominent feature, i.e. 215 

participants clearly felt the forces generated by the ball. For lighter ball masses, the cart-and-ball 216 

system approximated a rigid object. 217 

 218 

Apparatus and Data Acquisition 219 

The dynamics of the cup-and-ball system were simulated in a virtual environment (Fig 2). Participants 220 

were seated on an adjustable chair in front of a screen and interacted with the virtual environment via a 221 

3-degree-of-freedom robotic manipulandum (HapticMaster®, Motekforce, Amsterdam, Netherlands) 222 

(Van der Linde and Lammertse 2003). The force applied by the participants on the handle of the 223 

robotic arm (Finter in Eq 1) controlled the position of the virtual cup (X in Eq 1). The movements of the 224 

robotic arm were restricted to horizontal translations parallel to the participant's frontal plane to ensure 225 

a one-dimensional motion of the cup as in the model. Participants felt the interaction force (system 226 

inertia and ball force Fball in Eq 1) via the force feedback provided by the robotic manipulandum. A 227 

custom-written C++ program based on the HapticAPI (Moog FCS Control Systems) computed the ball 228 

kinematics and controlled the virtual display as well as the force feedback. 229 

 230 

Fig 2. Experimental set-up of the ball-and-cup task using virtual reality and force feedback. A: 231 

Rendering of the task in the virtual environment: the robotic manipulandum provided haptic feedback 232 

of the mechanical interaction with the object, while the behavior of the system was displayed online on 233 
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the back-projection screen. The physical model used the distances shown on the figure, while the 234 

distances displayed on the screen were multiplied by a factor of 4 for visibility. The cup displayed was 235 

7.5 times smaller than the physical arc determined by the length d of the pendulum. B: A participant 236 

using the HapticMaster to interact with the simulated cup-and-ball system. The position of the cup was 237 

controlled by the position of the end-effector of the robot. 238 

 239 

The cup and ball movements were displayed on a 2.40 m × 2.40 m back-projection screen located 2.15 240 

m in front of the participants. The display consisted of two green rectangular targets on a horizontal 241 

line delimiting the displacement of the cup; a yellow semi-circle represented the cup and a small white 242 

circle represented the ball (Fig 2). Although the cup was only displayed as a semi-circle, there was no 243 

restriction on the ball angle and the pendular rotations could exceed 90° without the ball escaping the 244 

cup. The visual translation of the cup was 4.0 times the physical displacement of the manipulandum. 245 

The cup displayed on the screen was 7.5 times smaller than the physical dimension of the cup (set by 246 

the pendulum length d), in order to have plausible dimensions and fit the display. The force applied by 247 

the participants on the robotic arm (Finter), the cup kinematics (position X, velocity 𝑋́, and acceleration 248 

𝑋́) and the computed ball kinematics (angular position θ, angular velocity 𝜃́, and angular acceleration 𝜃́) 249 

were recorded at 120 Hz. 250 

 251 

Experimental Task and Instructions 252 

Participants were asked to move the cup rhythmically between two targets located at a horizontal 253 

distance of 16.5 cm from one another (physical distance between the center of each target, Fig 2A). 254 

Participants were instructed to place the cup within the target rectangle at each excursion, so movement 255 

amplitude was prescribed. However, the scaled cup was 3 cm wide, while each target was 4.5 cm wide; 256 
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the peak-to-peak excursion of the physical cup oscillation could therefore range from 15 to 18 cm and 257 

still satisfy the task. This tolerance gave participants some leeway to develop their preferred motion. 258 

Further, participants were told that they could freely choose their frequency of oscillation and that they 259 

could change it throughout the experiment to arrive at their most preferred frequency. Even though 260 

participants did not receive explicit restrictions on the movement frequency, a demonstration of the 261 

task by the experimenter and the emphasis to “move rhythmically” discouraged them from extremely 262 

slow movements. Note that people do not necessarily prefer to move as slowly as possible, even though 263 

this may save effort (Van der Wel et al. 2010, Park et al. 2017). No instruction was given regarding the 264 

position of the ball within the cup, but participants were informed that the ball could not escape the cup 265 

(i.e. the behavior was that of a pendulum – attached with a string – rather than that of a loose ball). 266 

However, due to the haptic feedback provided by the manipulandum, participants could not ignore the 267 

movement of the ball: the ball movement affected the cart movement, as in a real system, and 268 

participants felt and saw it. Note that this experimental design intentionally refrained from specifying a 269 

single optimal task performance, but rather aimed to give insight into what participants preferred to do, 270 

especially after some exploration and practice.  271 

 272 

The experiment consisted of 5 blocks of 10 trials each. Each trial lasted 45 s. The trials within a block 273 

were separated by a 15 s pause, and the blocks were separated by a break of several minutes. At the 274 

beginning of each trial, the cup was positioned at the center of the left target, and the ball rested at the 275 

bottom of the cup. 276 

 277 

Data Analysis 278 

As the task could be achieved by multiple solutions, i.e. it had redundancy, we distinguished between 279 
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execution and the outcome or result of the movement. Performance was quantified by variables that 280 

fully described the kinematics of the system, i.e. amplitude and frequency of cart and pendulum, while 281 

the outcome was quantified by the task or result variables interaction force, predictability and 282 

resonance. Result variables are metrics that explicitly tested the hypotheses.  283 

 284 

Task Performance and Kinematic Variables: The task instructions elicited trajectories close to a 285 

sinusoid, therefore the movements of the cart (cup) were characterized by the amplitude Ak and the 286 

frequency fk of each cycle k (i.e. each back-and-forth movement). The cart amplitude Ak was defined as 287 

the half-distance between the minimum and the maximum of the cart position during cycle k. The cart 288 

period Tk was defined as the time between two successive maxima of the cart position; the oscillation 289 

frequency was fk = 1/Tk. In addition, we quantified the relative phase between the cart and pendulum 290 

movements by computing the time lag that maximized the cross-correlation between the time-series of 291 

the cart position and pendulum angle. The resulting time lag was then converted into relative phase. 292 

 293 

In order to detect the extrema in the cart position, the difference between successive data points, i.e. 294 

velocity, was computed. Extrema were detected as those values where the sign changed. In order to 295 

ensure robust detection of the cart extrema, the cart position data were smoothed with a zero-phase-lag, 296 

fourth-order, low-pass Butterworth filter with a 3 Hz cut-off frequency. Note that this smoothing was 297 

used only for detecting the extrema. 298 

 299 

Result Variables: Hypothesis 1 – Minimize Interaction Force: The net force required to perform the 300 

task was estimated by the root mean square of the continuous interaction force RMSF  301 
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𝑅𝑀𝑆𝐹(𝐹𝑖𝑛𝑡𝑒𝑟) =
1

𝑇
∫ 𝐹𝑖𝑛𝑡𝑒𝑟

2 (𝑡)𝑑𝑡
𝑇

0
  (2) 

where T is the duration of the trial. Note that this hypothesis is about the hand-cart interaction force and 302 

not the overall force exerted by the participants. In particular, muscular effort was not evaluated. 303 

 304 

Hypothesis 2 – Maximize Predictability: Predictability is a mathematical concept that can be 305 

operationalized in several ways. We opted to characterize the degree of predictability of the object 306 

dynamics by the mutual information between the input and the output of the system, i.e. the cart 307 

trajectory and the interaction force Finter. Mutual information is an information-theoretic metric that 308 

quantifies the statistical dependency between two variables, and thereby quantifies how much knowing 309 

one of the variables reduces the uncertainty about the other. High mutual information indicates a small 310 

degree of uncertainty (Cover and Thomas 2012). In the present context, mutual information quantifies 311 

the degree to which the long-term evolution of the interaction force can be expected, i.e. predicted, if 312 

the cart trajectory is known. Unlike cross-correlation, which is limited to linear relations between 313 

variables, mutual information assesses both linear and nonlinear dependency. It is therefore more 314 

suitable for this nonlinear system. In particular, mutual information has been commonly used to 315 

quantify predictability of weather and climate, which are modeled by chaotic dynamical systems 316 

(DelSole 2004; Kleeman 2011).  317 

 318 

The cart trajectory, which was close to sinusoidal, was represented by its phase in state space φ(t) = 319 

arctan(𝑋́/ (2 f π X)). The interaction force Finter(t) was used as defined above. The predictability 320 

measure MI was therefore  321 

𝑀𝐼(𝜑, 𝐹𝑖𝑛𝑡𝑒𝑟) = ∬ 𝑝(𝜑, 𝐹𝑖𝑛𝑡𝑒𝑟)𝑙𝑛 [
𝑝(𝜑,𝐹𝑖𝑛𝑡𝑒𝑟)

𝑝(𝜑)𝑝(𝐹𝑖𝑛𝑡𝑒𝑟)
] 𝑑𝜑𝑑𝐹𝑖𝑛𝑡𝑒𝑟  ( 3 ) 
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where p denotes the probability density functions for φ(t) and Finter(t). Mutual information is a 322 

dimensionless quantity, and its unit depends on the base of the logarithm that is used. Here, the natural 323 

logarithm was used, and the unit of mutual information is the nat. 324 

 325 

Hypothesis 3 – Exploit Resonance: Determining the resonance structure of the system requires 326 

analytical or numerical analysis of the system dynamics and cannot be inferred from the behavioral 327 

data alone. Therefore, Hypothesis 3 will be addressed later in the modeling and simulation section. 328 

 329 

Data Processing: For all kinematic and result variables, only the data between t = 20 s and t = 40 s of 330 

each trial were analyzed to eliminate transients at the beginning and end of the trial. As the 331 

experimental data were compared with model simulations described below, trials that significantly 332 

deviated from periodicity needed to be excluded as the model assumed periodicity. Hence, when the 333 

standard deviation of the oscillation frequency exceeded 10% of its mean, the trial was excluded as this 334 

indicated significant deviation from the instructed periodic movements. Similarly, a trial was excluded 335 

if the mean cart excursion was smaller than 12 cm or larger than 21 cm, as it did not satisfy the 336 

instructed excursion (15 to 18 cm), even allowing an additional 3 cm of tolerance. These relatively 337 

stringent inclusion criteria were adopted in post-processing only to enable meaningful comparison with 338 

the simulation study reported below (the simulation assumed constant movement frequency within a 339 

given amplitude range). They were not success/failure criteria for the participants. One participant's 340 

majority of trials did not satisfy these criteria and his entire data were eliminated from subsequent 341 

analysis. From the remaining 450 trials of 9 participants, only 17 trials did not meet these criteria. 342 

These 17 trials were not at the beginning of the experiment, but distributed across early and late trials. 343 

This indicated that the task did not require practice, and performing with periodicity was not a 344 
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challenge per se. 345 

 346 

The data processing and analyses were performed with MATLAB® (The Mathworks Inc., Natick, MA) 347 

and Gnumeric. The numerical values of the interaction force and predictability estimates for each 348 

experimental trial were computed with Matlab from the experimental trajectories. Mutual information 349 

was calculated with the Matlab MIToolbox-2.1.2. Statistical comparisons were performed using t-tests 350 

since the measures were normally distributed (confirmed by Kolmogorov–Smirnov tests). 351 

 352 

Results 353 

Task Performance and Kinematic Variables: As a first overview of participants' performance, Fig 3 354 

shows the frequencies fk adopted by participants plotted as a histogram. To obtain a sufficiently large 355 

number of data, each cycle, i.e. one back-and-forth movement, was a data point. Two distinct strategies 356 

were observed: frequencies were concentrated either between 0.4 and 0.7 Hz (low-frequency strategy) 357 

or between 0.9 and 1.8 Hz (high-frequency strategy). The low frequencies were densely concentrated 358 

with a sharp peak at around 0.65 Hz, while the higher frequencies were distributed more broadly. These 359 

two strategies were separated by a gap between 0.7 and 0.9 Hz: only very few oscillations had a 360 

frequency within this range. Four participants adopted the low-frequency strategy, and four participants 361 

chose the high-frequency strategy. One participant used low frequencies for the first 35 trials, and then 362 

switched to high frequencies; his first 35 trials were therefore put in the low-frequency strategy, and the 363 

subsequent trials in the high-frequency strategy. All others were consistent in their choice throughout 364 

their 50 trials, excluding the very first trials that were exploration. 365 

 366 

Fig 3. Distribution of frequencies adopted by all participants when manipulating the virtual cup-367 
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and-ball system. The histogram represents the frequencies fk of every single cycle of the 433 valid 368 

trials (total: 7350 cycles). Note that the x-axis is in log scale. 369 

 370 

Fig 4 depicts a low- and a high-frequency strategy with exemplary time series of the cart and pendulum 371 

positions of two representative participants. For the low-frequency strategy, the cart and pendulum 372 

movements were in-phase (the pendulum’s maximum angle was synchronized with the cart’s 373 

maximum position). In contrast, the cart and pendulum movements of the high-frequency strategy were 374 

in anti-phase relation (the pendulum maximum angle was synchronized with the cart’s minimum 375 

position).  376 

 377 

Fig 4. Experimental cart and pendulum trajectories. Representative trajectories of the cart (top 378 

panel) and pendulum (bottom panel) from one participant who chose the low-frequency strategy (A) 379 

and one participant who chose the high-frequency strategy (B). With the low-frequency strategy the 380 

cart and pendulum movements were in-phase, and the pendulum oscillations were large. With the high-381 

frequency strategy the cart and pendulum movements were anti-phase and the pendulum oscillations 382 

were smaller. 383 

 384 

Fig 5 shows how the kinematic variables A, f and the relative phase between the cart and pendulum 385 

movements changed over the 50 practice trials for the two groups, i.e. two strategies. In overview, all 386 

kinematic variables tended to show an initial transient and then reached a plateau relatively early on.  387 

 388 

Fig 5. Evolution across trials of the experimental kinematic variables. A: Amplitude A of the cart 389 

oscillations. B: Frequency f of the cart oscillations. C: Relative phase between the cart movement and 390 
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the pendulum movement. Note that the amplitude A is defined as the half-distance between the cup 391 

extrema. Each of the 433 valid trials was represented by one single value of A, f and 𝜃́0 𝜃́𝑚𝑎𝑥⁄  by 392 

averaging across all the cycles within 20 ≤ t ≤ 40 s in the trial. The blue and red colors correspond to 393 

the two frequency groups. The thick lines denote the mean across participants; the shaded areas denote 394 

the standard deviations across participants.  395 

 396 

Cart Oscillation Amplitude (Fig 5A): The amplitude A of the cart was relatively invariant throughout 397 

the whole experiment in the low-frequency group, while for the high-frequency group it only stabilized 398 

in approximately the last 20 trials. The mean cart amplitude in the last 20 trials converged to similar 399 

values in both frequency groups: 8.8 ± 0.1 cm in the low-frequency group and 8.9 ± 0.1 cm in the high-400 

frequency group. These values were within the instructed amplitude range – though close to the higher 401 

limit – showing that both participant groups satisfied the task. The mean amplitudes over the last 20 402 

trials were not significantly different between groups (p = 0.47). 403 

 404 

Cart Oscillation Frequency (Fig 5B): After initial exploration in which all participants adopted 405 

relatively low frequencies (around 0.5 Hz in the very first trials), the frequency f stabilized after 406 

approximately 15 trials in both groups. The low-frequency group arrived at a mean movement 407 

frequency of 0.65 ± 0.01 Hz (average and standard deviations across the last 35 trials). The high-408 

frequency group adopted a mean movement frequency of 1.27 ± 0.04 Hz (average and standard 409 

deviations across the last 35 trials), although the variability across participants was much higher, as 410 

already indicated by the broad distribution in Fig 3. The mean frequencies over the last 35 trials were 411 

significantly different between groups (p < 0.01).   412 

 413 
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Cart and Pendulum Synchronization (Fig 5C): In the low-frequency group, the relative phase between 414 

the cart and pendulum movements remained close to zero for all trials, indicating in-phase movements 415 

(average relative phase over all trials: 4.92 ± 2.71 degrees). In the high-frequency group, after abruptly 416 

transitioning from 0 to 180 degrees in the first 5 trials, relative phase stabilized at around 180 degrees, 417 

indicating anti-phase movements (average relative phase over the last 45 trials: 181.9 ± 4.47 degrees). 418 

No intermediate relative phase values were observed in any of the experimental trials.  419 

 420 

Result Variables and Hypothesis Testing: Fig 6A and C display the evolution of the result variables 421 

interaction force RMSF and mutual information MI, averaged over all participants across trials. The 422 

two frequency strategies are again shown separately. Similar to the kinematic variables, there is an 423 

initial change leading to a plateau relatively early. To evaluate the hypotheses the initial 5 trials were 424 

compared with the final 5 trials. 425 

 426 

Fig 6. Evolution across trials of the result variables. Evolution of the experimental (A, C) and 427 

simulated (B, D) result variables root mean square interaction force RMSF and mutual information MI 428 

across trials. The experimental variables were computed from the measured time-series. The simulated 429 

variables were computed from time-series obtained by simulation of the coupled model (described 430 

below). The simulations were run using the experimental values of the cart amplitude and frequency. 431 

The solid lines represent the average over all participants in each of the two frequency groups, and the 432 

shaded areas represent one standard deviation. 433 

 434 

Hypothesis 1 – Interaction Force: The root mean square interaction force RMSF increased from 2.57 ± 435 

0.56 N to 5.49 ± 0.10 N in the low-frequency group, and from 5.48 ± 1.59 N to 9.09 ± 0.38 N in the 436 
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high-frequency group between early and late trials. The increase was significant in both groups (p < 437 

0.001). This evolution suggests that participants did not minimize interaction force, counter to 438 

Hypothesis 1. Instead, with practice they increased the exerted interaction force. Further, 5 out of the 9 439 

participants chose the high-frequency strategy which was associated with significantly higher RMSF 440 

values. If minimization of interaction forces had been the criterion, all participants should have 441 

converged to the low-frequency strategy. 442 

 443 

Hypothesis 2 - Predictability: Mutual information MI between the interaction force and the cart 444 

kinematics of the low-frequency group increased from 1.25 ± 0.05 nat in the first 5 trials to 1.44 ± 0.06 445 

nat in the last 5 trials. In the high-frequency group, mutual information increased from 1.36 ± 0.08 nat 446 

to 1.53 ± 0.03 nat between early and late trials. The increase was significant in both groups (p < 0.003) 447 

supporting Hypothesis 2 that participants sought to increase predictability of the system they interacted 448 

with. Note that though the increase in MI seemed modest, the maximum achievable value of MI was 449 

around 1.8 nat (for achievable oscillation frequencies). Therefore, the observed relative increases were 450 

important. 451 

 452 

Simulations and Analysis of the Result Space 453 

The results of the behavioral experiment provided support for Hypothesis 2 that humans strive to 454 

increase the predictability of the interaction when manipulating an inherently erratic or unpredictable 455 

system. Conversely, the interaction force was not minimized in this interactive task (counter to 456 

Hypothesis 1). To further evaluate these findings and to test Hypothesis 3, we compared the strategies 457 

adopted by participants with possible alternative executions to shed light on priorities in human control. 458 

To this end, model simulations were performed to compute the result variables for alternative 459 
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executions that could have achieved the task. 460 

 461 

A Coupled Model 462 

In a previous study, the task dynamics was analyzed by considering the behavior of the cart-and-463 

pendulum system alone without including the controlling hand (Nasseroleslami et al. 2014). However, 464 

this uncoupled model only partly replicated our experimental data (see Appendix A). We therefore 465 

extended the model to include the continuous coupling between the cart and the hand. 466 

 467 

Mechanical Model and Forward Dynamics: To capture the dynamics of the task more accurately, the 468 

cart-and-pendulum system was coupled to the hand dynamics (Fig 7). The hand dynamics was 469 

represented by an ideal force generator (force Finput) in parallel with a spring (stiffness K) and a damper 470 

(damping coefficient B). 𝐹𝑖𝑛𝑝𝑢𝑡(𝑡) was the force required to follow a desired trajectory (𝑋𝑑𝑒𝑠(𝑡), 𝑋́𝑑𝑒𝑠(𝑡)). 471 

If the full dynamics of the task – including the pendulum force – were perfectly anticipated, 472 

participants would be able to generate an input force Finput allowing the cart to exactly follow the 473 

desired trajectory Xdes(t). In reality, however, it was unlikely that participants learnt the perfect model 474 

due to the pendulum force acting as a perturbation. Therefore the motion due to the generated input 475 

force Finput(t) did not exactly track the desired cart trajectory, so that the actual cart trajectory X 476 

differed from Xdes. The spring and damper – which were a simplified model of hand impedance – then 477 

served to resist this perturbation. Note that this model represented the impedance at the level of the 478 

limb: the stiffness K and damping B corresponded to limb features and not to properties of the involved 479 

muscles. The equations of motion of the coupled model are  480 

(𝑚𝑐 + 𝑚𝑝) 𝑋̈ = 𝑚𝑝𝑑 [ 𝜃2̇ sin 𝜃 − 𝜃̈ cos 𝜃] + 𝐹𝑖𝑛𝑡𝑒𝑟 = 𝐹𝑏𝑎𝑙𝑙 + 𝐹𝑖𝑛𝑡𝑒𝑟 
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𝜃̈ = − 
𝑋̈

𝑑
cos 𝜃 −  

𝑔

𝑑
sin 𝜃                               (4)                           

𝐹𝑖𝑛𝑡𝑒𝑟 = 𝐹𝑖𝑛𝑝𝑢𝑡 − 𝐾(𝑋 − 𝑋𝑑𝑒𝑠) − 𝐵(𝑋̇ − 𝑋̇𝑑𝑒𝑠) 

Given the task instructions, the desired trajectory was a sinusoid Xdes(t) = A sin(2 π f t + π/2).  481 

 482 

Fig 7. Model used to analyze the dynamics of the task in simulation.  Forward dynamics of the cart-483 

and-pendulum system coupled to a model of hand impedance. 484 

 485 

The coupled model was simulated with forward dynamics, i.e. computing the system state variables 486 

𝑋(𝑡), 𝑋́(𝑡), 𝜃(𝑡), 𝜃́(𝑡) and interaction force Finter(t) from a known Finput(t). Since Finput(t) could not be 487 

measured experimentally, it was chosen to match the force required to manipulate a rigid object of 488 

similar mass, i.e. 𝐹𝑖𝑛𝑝𝑢𝑡(𝑡) = (𝑚𝑐 + 𝑚𝑝) 𝑋̈𝑑𝑒𝑠(𝑡). Humans can manipulate rigid objects very accurately, 489 

suggesting that they have a good model of the task dynamics. The hand impedance parameters K and B 490 

were considered constant during a trial. 491 

 492 

Execution Variables: To evaluate the three hypotheses, one must first define a ”strategy”: a strategy 493 

was defined by the set of execution variables that participants directly controlled and that fully 494 

determined the task outcome (and hence referred to as result variables). While the cart oscillation 495 

amplitude A was prescribed in the experiment, participants could freely choose three variables of the 496 

coupled model: the movement frequency f, the hand stiffness K and the damping B, referred to as 497 

execution variables. 498 

 499 

Unlike the movement frequency f, the experimental hand stiffness and damping could not be measured 500 
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directly, but had to be estimated to afford forward simulations. To this end, an optimization was 501 

conducted which aimed to estimate the values of K and B for which the simulated cart and pendulum 502 

trajectories best resembled the experimental trajectories. The optimization process and the cost 503 

criterion C are detailed in Appendix B.  504 

 505 

Simulation of Result Variables and Hypothesis Testing: As for the behavioral experiment, the 506 

simulation tested the hypotheses by evaluating the result variables root mean squared interaction force 507 

RMSF (Eq. 2) and mutual information MI between the cart kinematics and the interaction force (Eq. 3). 508 

To obtain the space of all executions spanned by execution variables f, K and B forward dynamics 509 

simulation of the coupled model were run to generate the profiles of the cup kinematics φ(t) and the 510 

interaction force Finter(t). Using Matlab-Simulink, the simulation time was 45 s, but only data from 20 511 

≤ t ≤ 40 s were analyzed to eliminate transients. The two result variables MI and RMSF were then 512 

calculated with Matlab as for the experimental data. These results then served to test Hypotheses 1 and 513 

2. 514 

 515 

To evaluate Hypothesis 3 (exploit resonance), a frequency response analysis of the coupled model was 516 

conducted in Matlab. Due to the nonlinearity of the coupled cart-and-pendulum plus human hand 517 

system, classic frequency response tools could not be used. However, the system could be linearized 518 

assuming small pendulum angles. Although this approximation was not valid for all frequencies, the 519 

linear analysis allowed further insight into the behavior of the system. In the frequency response 520 

analysis, only one of the execution variables, the movement frequency f, was varied, while the hand 521 

stiffness K and damping B were fixed to typical values: one corresponding to the mean values of K and 522 

B adopted by participants in the low-frequency group, and the other to the mean values in the high-523 
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frequency group (see Appendix B for the identification procedure of experimental values of K and B). 524 

 525 

Simulation Results of the Coupled Model 526 

Figs 8A and 9A display the 3D execution space spanned by frequency f, stiffness K and damping B. For 527 

each combination or point in this space the result variables RSMF and MI were calculated (resolution of 528 

f: 0.005 Hz, resolution of K: 2 N/m, resolution of B: 1 N.s/m). The green shades denote the area of low 529 

interaction force RMSF (Fig 8A) and the pink shades denote the areas of high MI or predictability (Fig 530 

9A), the hypothesized strategies according to Hypothesis 1 and 2, respectively. The blue dots are the 531 

participants’ data, one point for each trial. Note that the participants’ data points in the two figures are 532 

the same to compare them with the two simulated result variables. Figs 8B and 9B show a 2D contour 533 

map of the same RMSF and MI, plotted for a constant value of hand damping B = 10 N.s/m. Hence, this 534 

2D space only shows a subset of all participants’ data points (for 8 < B < 12 N.s/m). The result space 535 

for MI contains one area of very low predictability for frequencies around 0.8 Hz (Fig 9). This area 536 

coincides with an area where the interaction force RMSF is low (Fig 8); therefore, the two hypotheses 537 

of interaction force minimization and predictability maximization are mutually exclusive. Conversely, 538 

for frequencies around 0.64 Hz and higher than 1.20 Hz, predictability was high, but interaction force 539 

was high as well. 540 

 541 

Fig 8. 3D plot and 2D contour map of RMSF in the space of the execution variables. A: 3D plot of 542 

the root mean square interaction force RMSF in the space spanned by the three execution variables f, K 543 

and B. The green shading represents areas of low interaction force, RMSF < 3 N. B: 2D map of RMSF 544 

in the space spanned by two of the execution variables: f and K. The hand damping B was fixed at 10 545 

N.s/m. The blue dots represent the strategies (f, K, B) adopted by participants in the experiment. The 546 
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dark blue dots correspond to trials for which the impedance fit was good (cost C < 0.15, 80 % of trials); 547 

the lighter dots are trials where 0.15 < C < 0.20 (12 % of trials). The trials where the impedance fit was 548 

poor (C > 0.20) are not represented since they were not reliable (8 % of trials). The cost C is defined in 549 

Appendix B. 550 

 551 

Fig 9.  3D plots and 2D contour map of MI in the space of the execution variables. A: 3D plot of 552 

the mutual information MI between the cart trajectory and interaction force in the space spanned by the 553 

three execution variables f, K and B. The pink shading represents areas of high mutual information, 554 

MI > 1.2 nat. B: 2D map of MI in the space spanned by two of the execution variables: f and K. The 555 

hand damping B was fixed at 10 N.s/m. The blue dots represent the strategies (f, K, B) adopted by 556 

participants in the experiment. The dark blue dots correspond to trials for which the impedance fit was 557 

good (cost C < 0.15, 80 % of trials); the lighter dots are trials where 0.15 < C < 0.20 (12 % of trials). 558 

The trials where the impedance fit was poor (C > 0.20) are not represented since they were not reliable 559 

(8 % of trials). The cost C is defined in Appendix B. 560 

 561 

Hypothesis 1 – Interaction Force: As seen in Fig 8A, very few experimental trials overlapped with 562 

low RMSF solutions (indicated by green areas) that separated the two frequency groups. Very few trials 563 

were centered in the low interaction force/low predictability area, and two of these data points were 564 

based on only a moderately good impedance fit (light blue dot). The 2D section in Fig 8B shows the 565 

modulation of RMSF for different frequency and stiffness combinations. Notably, the low interaction 566 

force solutions are indicated at movement frequencies lower than 0.5 Hz or between 0.7 and 0.9 Hz. 567 

The experimental data points clearly were not in these regions and therefore did not support Hypothesis 568 

1.  569 
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 570 

In addition, the simulated time series of the model were analyzed in analogous fashion to the 571 

experimental time series. The simulated RMSF was computed from time-series obtained by simulation 572 

of the coupled model initialized with the experimental values of the execution variables. Fig 6B 573 

displays the evolution across trials of the simulated RMSF averaged over all participants in each of the 574 

two frequency groups. The significant increase in RMSF from early to late trials in both groups was a 575 

further indicator that low interaction force was not a priority. The simulated RMSF increased from 2.35 576 

± 0.51 N to 4.89 ± 0.07 N in the low-frequency group and from 4.42 ± 1.89 N to 7.44 ± 0.58 N in the 577 

high-frequency group (p < 0.001). Note that despite some discrepancies between the experimental and 578 

simulated RMSF, the general trends in their evolution and even the magnitudes were remarkably 579 

similar, supporting the adequacy of the coupled model and the estimated values of K and B. 580 

 581 

Hypothesis 2 - Predictability: According to Fig 9A, none of the participants chose a strategy located 582 

in the area of lowest MI, or low predictability (non-shaded areas). The two frequency groups were 583 

clearly separated by the low MI area around 0.8 Hz. Fig 9B details the irregular pattern of MI for 584 

different frequency-stiffness combinations, with adjacent regions of high and low MI between 0.6 and 585 

0.8 Hz. This fast change in MI was likely due to the resonance structure of the system detailed below. 586 

The more intricate variation of MI at higher frequencies might be due to chaotic behavior. The data 587 

suggest that participants adopted strategies with relatively high MI or high predictability.  588 

 589 

Additionally, MI was computed from the time series of the simulated data and is presented in Fig 6D. 590 

MI increased from 1.11 ± 0.05 nat in the early (first 5) trials to 1.30 ± 0.03 nat in the late (last 5) trials 591 

in the low-frequency group (p = 0.003). In the high-frequency group, the simulated MI increased from 592 
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1.21 ± 0.07 nat to 1.29 ± 0.02 nat (p = 0.02). Again, note that the maximum value of MI was about 1.8 593 

nat. Comparing this progression with the experimental values (Fig 6C) shows that both the time course 594 

and the magnitudes of the MI simulated values were close to the experimental values, supporting the 595 

adequacy of the coupled model and the estimated values of stiffness and damping. This simulation 596 

result strengthens the experimental results that predictability was increased with practice.  597 

 598 

Hypothesis 3 - Resonance: One essential feature of the task dynamics is its resonance structure: the 599 

coupled system has two resonance peaks and one anti-resonance frequency or dynamic zero between 600 

the two resonance frequencies. Fig 10 displays Bode magnitude and phase plots of the linearized 601 

coupled model for two representative values of hand impedance. System A was simulated with K = 100 602 

N/m and B = 10 N.s/m, values that were typical for the low-frequency group. System B with K = 200 603 

N/m and B = 15 N.s/m was typical for the high-frequency group. As the responses of the two systems 604 

reveal, the resonance peaks depend on the values of K and B. The panels for pendulum angle show one 605 

clear resonant peak at 0.68 Hz for system A and at 0.71 Hz for system B.  606 

 607 

Surprisingly at first sight, the second peaks at the higher frequencies are hardly noticeable. This arises 608 

from the fact that the simulation assumed that subjects generated a sinusoidal predictive force Finput(t) 609 

intended to produce the desired cart motion Xdes(t). This predictive force was based on an incomplete 610 

model of the object dynamics which considered only its lowest-frequency mode of behavior, i.e. as 611 

though the pendulum and the cart moved as one body 𝐹𝑖𝑛𝑝𝑢𝑡 = (𝑚𝑐 + 𝑚𝑝)𝑋́𝑑𝑒𝑠. This imperfect predictive 612 

force only partially compensated for object dynamics, which was nevertheless sufficient to counteract 613 

the object’s resonances, especially at the higher frequencies. Mathematically, the predictive force 614 

introduced complex-valued zeros near the complex-valued poles that describe the high-frequency 615 
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resonance. These zeros tended to cancel or ‘mask’ the effect of the adjacent poles, converting a sharp 616 

resonant peak into a broad region of nearly-constant magnitude (see Footnote 1).  617 

 618 

Importantly, the response of cup displacement for both systems shows a sharp valley, indicating the 619 

anti-resonance at 0.74 Hz between the two resonances. Note that the anti-resonance frequency is 620 

identical in system A and B, i.e. independent of the values of K and B.  The phase plots in Fig 10 621 

display the relative phase between the input force and the cart movement (red line), and the relative 622 

phase between the input force and the pendulum movement (blue line). Comparison between these two 623 

curves highlights that for low frequencies the cart and pendulum are in-phase, while for frequencies 624 

higher than the anti-resonance frequency, cart and pendulum motions are anti-phase. In addition, the 625 

relative phase between the input force and the cart movement (red line) reveals that for frequencies 626 

outside the two resonance frequencies, the cart movement is anti-phase with the input force. 627 

Conversely, over a small interval between the two resonance frequencies, the relative phase between 628 

the input force and the cart movement is changing. 629 

 630 

For comparison of the model’s resonant peaks with the experimental data, the distributions of the 631 

observed frequencies in participants are shown in grey (Fig 10). For the low-frequency group (System 632 

A) the peak in the distribution is very close to the system’s resonance peak. For the high-frequency 633 

group, participants show a very broad distribution that matches with the smeared-out resonance peak of 634 

System B. Comparison between Fig 9 and 10 reveals that the two resonance frequencies of the system 635 

coincided with areas of high MI. This suggests that the behavior of the system is easily predictable 636 

when oscillating at a resonance frequency. Conversely, the anti-resonance frequency coincides with a 637 

region of low MI, therefore the behavior of the system is hard to predict when oscillating at or around 638 
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the anti-resonance frequency. These results are consistent with Hypothesis 3. 639 

 640 

Fig 10: Bode amplitude and phase plots of the linearized coupled model, for different values of 641 

hand impedance. A: K = 100 N/m and B = 10 N.s/m, typical for the low-frequency group. B: K = 200 642 

N/m and B = 15 N.s/m, typical for the high-frequency group. Note that the pendulum amplitude plots 643 

have different scales in A and B. The phase plots of the cart and pendulum are superimposed to 644 

highlight the synchronization of their movements. For comparison, the grey histogram represents the 645 

distribution of frequencies adopted by participants in the experiment (identical to Fig 3). The part of the 646 

graph right (resp. left) of the anti-resonance frequency is greyed out because it is not relevant for 647 

system A (resp. B) with values of K and B for which the frequency analysis was performed. 648 

 649 

 650 

Discussion 651 

This study examined strategies that humans adopt when manipulating objects with underactuated 652 

internal dynamics. To date, the majority of research in motor neuroscience has examined unconstrained 653 

movements in highly controlled experimental tasks to render interpretable data; only relatively few 654 

studies have examined control of complex objects. However, everyday behavior is full of complex 655 

manipulations that set humans apart from primates and other animals. The present study focused on 656 

continuous physical interaction with a cart-and-pendulum system, representing the simplified dynamics 657 

of a moving a cup of coffee. Participants had to move with a prescribed amplitude, but could choose 658 

their preferred frequency. Importantly, in continuous interaction with the complex object, the dynamics 659 

of this system is underactuated and can exhibit erratic and unpredictable behavior. Such unpredictable 660 

dynamics poses significant challenge to any internal model guiding the goal-directed manipulation.  661 
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 662 

Using both behavioral data and numerical analysis of the cart-and-pendulum system coupled to a model 663 

of hand impedance, we tested three hypotheses: humans minimize the interaction force required to 664 

move the system (Hypothesis 1); alternatively, they maximize predictability of the system behavior 665 

(Hypothesis 1); and/or they exploit the resonance structure of the system (Hypothesis 3). Interaction 666 

force between hand and cart was quantified by its root mean squared value. Predictability was 667 

operationalized by the mutual information between the kinematics of the cart and the interaction force. 668 

Exploiting resonance was tested by comparing the chosen frequencies with the resonance structure of 669 

the system. Results of the experiment showed that participants increased, not decreased, the interaction 670 

force (counter to Hypothesis 1), while they also increased predictability of the system with practice 671 

(consistent with Hypothesis 2). Half the participants chose a strategy that had significantly higher 672 

interaction forces, while affording similarly high degree of predictability. 673 

 674 

The results of the simulations gave further support that, among alternative strategies (defined by values 675 

of movement frequency and hand impedance that humans could adopt), participants chose strategies 676 

with high predictability, but not with low interaction force. These results corroborate and generalize 677 

those obtained by Nasseroleslami et al. (2014) in a similar experiment that prescribed movement 678 

frequency, but left amplitude free to choose. In addition, frequency response analysis of the linearized 679 

coupled system showed that participants chose movement frequencies close to the resonance 680 

frequencies of the system, while avoiding the anti-resonance frequency (consistent with Hypothesis 3). 681 

These findings demonstrate that predictability is a control priority in complex underactuated object 682 

manipulation, which takes precedence over principles such as interaction force minimization. The fact 683 

that results support both Hypothesis 2 and Hypothesis 3 suggests that predictability may be explained 684 
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by the resonance structure of the system. Therefore, manipulation of underactuated objects cannot be 685 

understood simply by extending principles of free movements or rigid object manipulation; 686 

underactuated object manipulation constitutes a different class of tasks with different control 687 

challenges.  688 

 689 

Assumptions of the Coupled Model 690 

To provide an entry to a quantitative understanding of this complex task, an essential element in our 691 

approach was simulation of the task dynamics with only minimal assumptions about the controller. We 692 

therefore coupled a simplified model of hand impedance to the cart-and-pendulum system. This 693 

coupled model approximated the experimental data more accurately than a previous model with the 694 

cart-and-pendulum alone (Appendix A). However, as this model went beyond the physics of the task 695 

alone and included the human controller, certain assumptions had to be made.   696 

 697 

Invariance of Input Force: One first assumption was that the input force (Eq 4) was equal to the force 698 

required to move a rigid object of the same mass as the cart-and-pendulum system; further, the 699 

amplitude, frequency, and phase of this input force was the same sinusoidal signal during and across 700 

trials. While this is a reasonable initial assumption, it is likely that humans learned to adapt their input 701 

force, based on the perceived interaction force and/or the cart displacement. As the simulation kept the 702 

input force invariant, the desired cart trajectory was not always accurately tracked, especially when the 703 

hand impedance was low. A plausible next modeling step would be to modulate the amplitude of the 704 

sinusoidal input force based on the difference between the actual and desired cart amplitude. Even 705 

though it is relatively straightforward to include such an adaptation of the input force, this would 706 

evidently make the model more complex and not necessarily help to understand the data. 707 

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (155.033.198.119) on June 5, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



Maurice et al. : Predictability, Force and (Anti-)Resonance    33 

 

 

 708 

Invariance of Hand Impedance: A second simplifying assumption was that the hand impedance was 709 

constant throughout one trial. Given the task instruction and the virtual display, the amplitude of the 710 

cart movement was the main concern for participants, while the actual trajectory between the two 711 

targets was secondary. Therefore, it could be speculated that participants may increase their arm 712 

impedance close to the targets to ensure accuracy in the amplitude, but decrease impedance during 713 

translation between targets. A sinusoidally changing impedance might therefore better match 714 

experimental data. However, as with the modulation of input force, the potential gain in realism would 715 

be at the cost of more parameters to identify. Therefore, constant impedance and constant input force is 716 

a reasonable compromise between accurate replication of experimental data and transparency of the 717 

model. 718 

 719 

Predictability, Muscular Effort and Antagonist Co-Contraction 720 

The simulations reveal that high predictability and low interaction force are non-overlapping strategies 721 

and the data provide evidence that it is predictability that determines the choice of control strategy. The 722 

finding that humans do not try to minimize interaction force may seem to run counter to many studies 723 

on unconstrained movements that have shown that humans favor energy- or effort-efficient strategies 724 

(Nelson 1983; Alexander 2000; Prilutsky and Zatsiorsky 2002). It should be pointed out that our force 725 

criterion only quantified the net external force, i.e. interaction force. While this external force 726 

increased, it might be that higher predictability had a secondary effect on decreasing internal muscular 727 

effort: when the system dynamics is erratic, it is difficult to anticipate and preempt the perturbing force 728 

of the pendulum by feedforward control. The user may then rely on his/her hand impedance to reject 729 

these perturbations and maintain the desired cart trajectory. This requires increasing the impedance 730 
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through co-activation of antagonist muscles, which results in higher muscular effort without any 731 

consequences on the net external force. Conversely, predictable object dynamics may enable 732 

participants to anticipate the perturbing interaction force, and thereby reduce effort due to co-733 

contraction. Predictability can therefore afford a way to minimize the overall muscular effort. 734 

 735 

The strongest evidence that force minimization was not an objective was that half of the participants 736 

chose the high-frequency strategy associated with higher forces than the low-frequency strategy (Fig 737 

6).  If effort were the main concern, all participants should have chosen the lower frequency and lower 738 

impedance (Appendix B). As mutual information was similar in both frequency groups, the low-739 

frequency solution would have decreased the overall effort and reconciled the predictability and 740 

interaction force objectives. However, one point to note is that the task required only relatively low 741 

forces, which may be one reason why optimizing effort was not a priority. Testing the same experiment 742 

with different masses for the cart-and-pendulum system is a direction for future work. 743 

 744 

Predictability, Error Correction and Computational Cost 745 

Another factor that may have influenced participants' choices was that the low-frequency strategy was 746 

close to the boundary of the low predictability zone (starting around 0.7 Hz in Fig 9), compared to the 747 

high-frequency solution that was more robust or tolerant to variation in frequency. With the low-748 

frequency strategy, small variations could easily lead to erratic behavior and perturbations that require 749 

correction. If such error corrections were executed by the CNS, then the computational cost would 750 

increase. Computational effort has been recognized and included as a cost in several optimization 751 

studies (Todorov and Jordan 2002; Ronsse et al. 2010). Yet in these modeling approaches, 752 

computational cost terms have remained unspecified placeholders for unaccounted factors contributing 753 
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to human control choices. A series of studies by Sternad and colleagues have argued that the human 754 

controller may exploit the stability properties of a task to avoid computationally expensive corrections 755 

(Sternad 2017). Using the task of rhythmically bouncing a ball with a paddle, several experiments 756 

provided robust evidence that human subjects learned to attain dynamic stability, such that small errors 757 

passively decayed, obviating the need for explicit corrections (Schaal et al. 1996; Sternad et al. 2000; 758 

de Rugy et al. 2003). When applying larger perturbations, additional corrections were evidenced, 759 

although the signature of dynamic stability was still visible (Siegler et al. 2010; Wei et al. 2007, 2008). 760 

In a similar spirit, mathematical and empirical studies of a throwing task showed that humans seek 761 

solutions that are tolerant to error and noise, therefore requiring fewer corrections (Sternad et al. 2001, 762 

2014; Cohen and Sternad 2009). Predictability of the interactive dynamics of complex object 763 

manipulation may again be a manifestation of human controllers seeking to simplify the control task. 764 

 765 

Resonance/Anti-Resonance Structure, Effort and Predictability 766 

Did participants choose to move at resonance peaks to reduce effort? As Fig 10A showed, participants 767 

who moved the cart and pendulum in phase could take advantage of the low-frequency resonance to 768 

reduce effort, but had to exert precise control of frequency to avoid the nearby anti-resonance 769 

frequency. Participants who chose the anti-phase strategy expended more muscular effort due to the 770 

higher frequency of anti-phase motion and to the elevated stiffness and damping they exhibited. 771 

However, the anti-phase motion was available over a much broader range of frequencies (Fig 10B) and 772 

therefore required much less precise control of frequency. Further, they were far away from the anti-773 

resonance frequency or dynamic zero at 0.74 Hz. 774 

 775 

Did participants prefer certain cup frequencies because they were associated with specific relative 776 
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phases between the cart and the pendulum movements or between the input force and the cart 777 

movement? Several studies on rhythmic bimanual coordination have shown that humans prefer in-778 

phase and anti-phase relations between two limbs over other phase relations (Kelso 1984; Schöner and 779 

Kelso 1988; Sternad et al. 1992, 1996). In the present experiment, participants also oscillated the cart 780 

either in-phase (at low frequencies) or anti-phase (at high frequencies) with the ball movements and 781 

avoided intermediate relative phases at the anti-resonance frequency. However, this observation does 782 

not imply that participants chose strategies for their relative phase values. Except at anti-resonance, the 783 

task dynamics did not allow other relative phases as the frequency response plots show (Fig 10). The 784 

entire frequency range below 0.65 Hz corresponds to in-phase coupling, but participants of the low-785 

frequency group nevertheless all converged to a narrow area of high predictability (Fig 9). Similarly, 786 

the high-frequency group favored those subsets of the frequency range with high predictability. In 787 

addition, a large set of frequencies outside of the two resonance frequencies correspond to anti-phase 788 

coupling between the input force and the cart movement (red line in Fig 10). It is reasonable to think 789 

that participants may prefer this anti-phase coupling between what they predict (input force) and what 790 

they actually obtain (cart movement) over any other relative phase. Indeed, anti-phase coupling 791 

between force and movement is what one gets in the very common situation of manipulating a rigid 792 

object. However, if relative phase was the only concern, participants’ data points would be spread over 793 

all the frequencies with anti-phase coupling, and not grouped over a narrow frequency range. These 794 

observations support that potential phase preferences alone do not account for our observations. 795 

 796 

Why did participants avoid the anti-resonance frequency? At anti-resonance, the force generated by the 797 

pendulum movement (Fball in Eq 4) exactly opposes the interaction force exerted by the human (Finter 798 

in Eq 4), resulting in zero displacement of the cart. In addition, near the anti-resonance frequency the 799 
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relation between cart motion and input force undergoes a large and rapid, almost discontinuous, phase 800 

shift, whereas the relation between pendulum motion and input force does not (phase plot in Fig 10). 801 

Around the anti-resonance frequency, the oscillations of the cart and pendulum desynchronize very 802 

quickly and small variations result in large changes in the direction of the perturbing force due to 803 

pendulum motion. This makes the compensatory input force that should be applied to obtain the desired 804 

cart movement hard or impossible to predict. The results clearly showed that subjects consistently 805 

avoided the anti-resonance frequency and, implicitly, favored predictability.  806 

 807 

A Task-Dynamic Approach, Internal Models and Predictability 808 

Most computational studies on movement control start with a hypothesis about the human controller. 809 

For example, several studies of the pole-balancing task investigated specific hypotheses about the 810 

neural control system, ranging from different control models to the role of noise or sensory feedback 811 

(Mehta and Schaal 2002; Venkadesan et al. 2007; Milton 2011; Milton et al. 2013; Gawthrop et al. 812 

2013; Insperger et al. 2013). In contrast, our task-dynamic approach shifted the emphasis to first 813 

understand the task and its affordance, while minimizing assumptions about human neuromotor control 814 

(Sternad 2017). Starting with a mathematical model of the task and analysis of its dynamics, the 815 

solution space can be derived and human solutions can be evaluated. To make this mathematical 816 

approach transparent a simplified model is advantageous. Here, we reduced the fluid dynamics of the 817 

coffee to a single degree of freedom. As with any virtual implementation, this may raise the question 818 

whether the problem has become too simple and results will generalize to the real cup of coffee. 819 

Recently, two theoretical studies have indeed analyzed the cup of coffee system in its full physical 820 

complexity (Mayer & Kretchetnikov 2012, Han 2016). Comparison of these and our studies may reveal 821 

the advantages and disadvantages of the realistic versus computationally simplified approach. 822 
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 823 

Our task-based approach does not contradict, but complement controller-based approaches. When for 824 

example Nagengast et al. (2009) studied optimal control for the manipulation of a virtual mass-spring-825 

damper system, they assumed that participants had complete knowledge of the system dynamics. 826 

Similarly, Dingwell et al. (2002, 2004) showed that participants manipulating a linear mass-spring 827 

system displayed behavior compatible with learning an internal model of the object dynamics. 828 

However, underactuated objects, such as our cup-and-pendulum system pose a significant challenge 829 

due to their possibly unpredictable dynamics leading to an apparent absence of correlation between the 830 

human action and the resulting behavior of the system. Increasing the predictability of object dynamics 831 

might therefore be a way to increase the chance of acquiring an internal model. 832 

 833 

Footnotes 834 

Footnote 1: With K = 100 N/m and B = 10 N.s/m, the high-frequency poles are -1.87 +/- 6.72i and the 835 

zeros are -1.67 +/- 5.53i (in rad/s). With K = 200 N/m and B = 15 N.s/m, the high-frequency poles are  836 

-3.06 +/- 8.95i and the zeros are -2.50 +/- 7.77i (in Hz). 837 

 838 

Appendix A: Limitations of a Model without Hand Impedance 839 

In a previous study, the dynamics of the cup-and-ball task was analyzed by looking at the behavior of 840 

the cart-and-pendulum system alone without the controlling hand (Nasseroleslami et al. 2014). This 841 

uncoupled model is depicted in Fig A1 and the motion of the system is described solely by Eq 1. It is 842 

straightforward to simulate this uncoupled model using inverse dynamics calculations: if the cart 843 

trajectory X(t) and initial conditions of the cart and pendulum (𝑋0, 𝑋́0, 𝜃0, 𝜃́0) are given, the pendulum 844 

trajectory θ(t) and the interaction forces Finter(t) can be computed using Eq 1 and a numerical 845 
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integration scheme for θ. This uncoupled model has the advantage that it does not require any 846 

assumptions about control by the human (contrary to the coupled model). The only assumption is about 847 

the movement of the cart, which could reasonably be modeled by a sinusoid X(t) = A sin (2 π f t + π/2) 848 

given the task instructions. 849 

 850 

Fig A1. Model of the dynamics of the task. Inverse dynamics model of the cart-and-pendulum system 851 

alone.  852 

 853 

A first approach used this simple model to analyze the task in this work. In order to test to what degree 854 

this model faithfully reproduced human behavior, we ran inverse dynamics simulations to compute θ(t) 855 

and Finter(t). A separate simulation was run for each experimental trial based on X(t) and initial 856 

conditions taken from experimental values of (𝑋0, 𝑋́0, 𝜃0, 𝜃́0) and cart amplitude A and frequency f. This 857 

afforded direct comparison of the experimental and simulated trajectories of cart and pendulum and the 858 

interaction forces. The cart initial conditions X0 and Ẋ0 were fixed by the assumed sinusoidal shape of 859 

X(t): X0 = A and Ẋ0 = 0. Although all experimental trials started with the same nominal conditions 860 

(immobile pendulum at zero angle), trials contained a transient before participants settled onto their 861 

approximate steady-state with their chosen frequency. Initial transients were excluded, because the 862 

oscillation frequency varied substantially during this stage. Therefore, the values of the amplitude A, 863 

frequency f, and pendulum initial conditions 𝜃0 and 𝜃́0 were the experimental averages across all cycles 864 

within 20 ≤ t ≤ 40 s, as in the experimental data analysis. The simulated cart, pendulum and force 865 

profiles were then compared with the experimental time-series of the corresponding trial. A simulation 866 

was run for each of the 433 experimental trials with their respective values. 867 

 868 
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Fig A2 displays one representative example of cart and pendulum trajectories X(t) and θ(t) and the 869 

interaction force Finter(t) from the two frequency strategies. For the high-frequency strategy, all three 870 

simulated time-series (cart position, pendulum angle, interaction force) closely matched their 871 

experimental counterparts. For the low-frequency strategy, the experimental cart trajectory closely 872 

resembled the simulated trajectory, but the pendulum trajectory and the interaction force diverged after 873 

a few cycles. The experimental profiles were close to periodic, whereas the simulated profiles differed 874 

at each oscillation, developing complex, erratic (possibly chaotic) patterns. 875 

 876 

Fig A2. Comparison of experimental and simulated trajectories and force time-series for the 877 

uncoupled model. Experiment (red) and simulation (blue) profiles of the cart trajectory, pendulum 878 

trajectory and interaction force for one trial of each frequency strategy. Experimental data correspond 879 

to one representative trial in each of the two frequency strategies. Simulation data were computed from 880 

inverse dynamics of the uncoupled model, initialized with the experimental values of A, f, θ0 and 𝜃́0. A: 881 

High-frequency strategy (A = 8.9 cm, f = 1.182 Hz, θ0 = -0.31 rad, 𝜃́0 = -0.05 rad/s). B: Low-frequency 882 

strategy (A = 8.8 cm, f = 0.655 Hz, θ0 = 0.79 rad, 𝜃́0  = -0.08 rad/s). 883 

 884 

To quantify the divergence, the root-mean-square errors (RMS) between the experimental and 885 

simulated trajectories were computed. Table A1 summarizes RMS error for each quantity X, Ẋ, θ, θ̇ and 886 

Finter, expressed as percent of its respective maximum value in the corresponding experimental trial. In 887 

the high-frequency group, the RMS error was small and fairly consistent across variables (median RMS 888 

error around 10% of the variable maximum experimental value), indicating a reasonably good match 889 

between the experimental and simulated profiles. This uncoupled model was therefore a competent 890 

representation of the cup-and-ball task for the high-frequency strategy. With the low-frequency 891 
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strategy, however, the RMS error varied greatly and reached up to 30 % of the maximum value for the 892 

experimental pendulum angle and angular velocity (and interaction force to a lesser extent). These 893 

discrepancies between experimental and simulated data demonstrate that the uncoupled model did not 894 

represent the execution strategies adopted by the low-frequency group sufficiently accurately. 895 

 896 

Table A1. RMS error between experimental and simulated trajectories and force time-series for 897 

the uncoupled model. 898 

 

Low-frequency 

group 

High-frequency 

group 

 Median IQR Median IQR 

𝑟𝑚𝑠(𝑋𝑒 − 𝑋𝑠)

‖𝑋𝑒‖∞
 0.10 0.04 0.08 0.02 

𝑟𝑚𝑠(𝑋́𝑒 − 𝑋́𝑠)

‖𝑋́𝑒‖
∞

 0.13 0.06 0.08 0.03 

𝑟𝑚𝑠(𝜃𝑒 − 𝜃𝑠)

‖𝜃𝑒‖∞
 0.29 0.52 0.13 0.09 

𝑟𝑚𝑠(𝜃́𝑒 − 𝜃́𝑠)

‖𝜃́𝑒‖
∞

 0.31 0.39 0.11 0.07 

𝑟𝑚𝑠(𝐹𝑖𝑛𝑡𝑒𝑟
𝑒 − 𝐹𝑖𝑛𝑡𝑒𝑟

𝑠 )

‖𝐹𝑖𝑛𝑡𝑒𝑟
𝑒 ‖

∞

 0.22 0.29 0.12 0.04 

 899 

Ratio of RMS error between experimental and simulated data normalized by the maximum value for 900 

the cart and pendulum trajectories and interaction force in both subject groups. The simulated data were 901 

obtained from inverse dynamics simulation of the uncoupled model. The median and interquartile 902 
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range were computed over all 433 valid trials. 903 

 904 

A likely reason for the divergence between experimental and simulated data is the assumption of a 905 

perfectly sinusoidal cart trajectory in the simulations, whereas experimental trajectories exhibited small 906 

deviations from this ideal shape. Given the sensitivity of the cart-and-pendulum dynamics to initial 907 

conditions, small changes in the participant’s movement could lead to significant changes in the system 908 

evolution. These deviations of the experimental cart trajectories from a perfect sinusoid could have two 909 

main causes: the intrinsic variability of human movements, and the perturbations caused by the internal 910 

dynamics of the object. The first cause results from the ever-present human variability: even if the 911 

object was rigid, or if there were no object at all, humans are unable to repeat the same exact 912 

movements. While present in both frequency strategies, this variability could have different 913 

consequences, since the sensitivity of the system to initial conditions is not constant.  914 

 915 

The second cause – the perturbation forces created by the pendulum movements – affected the cart 916 

trajectory because the human hand is not an ideal position generator. Unexpected pendulum forces 917 

disrupted hand and hence cart movement. Though this is again true for both frequency strategies, the 918 

cart trajectory was likely less perturbed in the high-frequency strategy, because hand movements were 919 

faster, which is often associated with a higher hand impedance; higher impedance would result in better 920 

resistance to external perturbations and lower RMS error (Table A1).  921 

 922 

Furthermore, the interaction force Finter results from two different forces (Eq 1): one is the cart-and-923 

pendulum inertial force Finertia = (mc + mp) Ẍ, and the other is the pendulum force Fball. The average 924 

ratio between the RMS pendulum force and the RMS inertial force (computed for 20 ≤ t ≤ 40 s) was 925 
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0.70 ± 0.16 in the low-frequency group and 0.32 ± 0.05 in the high-frequency group (averaged across 926 

all trials of all participants in each of the two groups). Relative to the expected force (i.e. required to 927 

accelerate the total system inertia, similar to the manipulation of a rigid object), the magnitude of the 928 

unexpected perturbation (the pendulum force) was thus much higher in the low-frequency group and 929 

was therefore less likely to be resisted. Hence, the current study included the effect of hand impedance 930 

on the dynamics of the cart-and-pendulum system.  931 

 932 

Appendix B: Estimation of Hand Impedance in the Coupled Model 933 

Unlike the movement frequency f, the experimental hand stiffness K and damping B could not be 934 

measured directly, but had to be estimated from the human data. To this end, an optimization was 935 

conducted which aimed at finding the values of K and B for which the simulated cart and pendulum 936 

trajectories most resembled the experimental trajectories. For each combination of K and B a 45 s 937 

forward dynamics simulation of the coupled model was performed and compared with the 938 

corresponding experimental trial. The continuous variations in the cart amplitude and/or frequency in 939 

the experimental trials were evidently not captured in the simulation as constant desired cart 940 

amplitude/frequency was assumed. The simulations used the average experimental values of A and f 941 

across all cycles of the trial (20 ≤ t ≤ 40 s) to define the desired trajectory Xdes(t) = A sin(2 π f t + π/2) 942 

and the input force Finput(t) = (mc + mp) Ẍdes(t). However, the average amplitude and frequency were 943 

only representative of the experimental trial if they did not vary significantly throughout the trial. This 944 

motivated the stringent inclusion criteria in the analysis of the behavioral data. 945 

 946 

All combinations of 10 ≤ K ≤ 350 N/m (step size 2 N/m) and 3 ≤ B ≤ 50 N.s/m (step size 1 N.s/m) were 947 

tested to find the best fit. The difference between the experimental and simulated trajectories was 948 
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quantified by the cost C of the normalized root mean square errors of the four quantities X(t), Ẋ(t), θ(t), 949 

θ̇(t)   950 

𝐶 =
1

4
[
𝑟𝑚𝑠(𝑋𝑒 − 𝑋𝑠)

‖𝑋𝑒‖∞
+

𝑟𝑚𝑠(𝑋́𝑒 − 𝑋́𝑠)

‖𝑋́𝑒‖
∞

+
𝑟𝑚𝑠(𝜃𝑒 − 𝜃𝑠)

‖𝜃𝑒‖∞
+

𝑟𝑚𝑠(𝜃́𝑒 − 𝜃́𝑠)

‖𝜃́𝑒‖
∞

] (1) 

where the superscripts s and e stand for simulation and experimental, respectively. Only the data within 951 

20 ≤ t ≤ 40 s were included to avoid confounding by transients (both for experimental and simulated 952 

trials). 953 

 954 

While the movement frequency f was fixed in the simulations, experimental frequencies were not 955 

exactly constant within trials. Such variations of the experimental frequency created a temporal offset 956 

between the experimental and simulated trajectories, which could lead to high RMS errors even when 957 

the two profiles were similar. To limit this artifact, C was computed cycle by cycle, i.e. the RMS errors 958 

were computed for each cycle k by time-aligning the experimental and simulated trajectories of cycle k. 959 

Subsequently, they were averaged over all cycles. 960 

 961 

Across all trials, the median cost C measured for the best impedance fit of each trial was 0.104 with an 962 

interquartile range of 0.051. Table B1 gives the ratio between the RMS error between experimental and 963 

simulated time-series and the maximum experimental value of the corresponding trial for the state 964 

variables (𝑋, 𝑋́, 𝜃, 𝜃́) as well as for the interaction force Finter. The median value of the RMS error was 965 

between 9 and 13% of the maximum value, depending on the variable. Importantly, the error was 966 

consistently low in both groups, unlike for the uncoupled model above (see Table A1 in Appendix A).  967 

 968 

Table B1: RMS error between experimental and simulated trajectories and force time-series for 969 
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the coupled model.  970 

 Low-frequency group High-frequency group 

 Median IQR Median IQR 

𝑟𝑚𝑠(𝑋𝑒 − 𝑋𝑠)

‖𝑋𝑒‖∞
 0.09 0.04 0.09 0.02 

𝑟𝑚𝑠(𝑋́𝑒 − 𝑋́𝑠)

‖𝑋́𝑒‖
∞

 0.11 0.05 0.08 0.03 

𝑟𝑚𝑠(𝜃𝑒 − 𝜃𝑠)

‖𝜃𝑒‖∞
 0.11 0.07 0.12 0.07 

𝑟𝑚𝑠(𝜃́𝑒 − 𝜃́𝑠)

‖𝜃́𝑒‖
∞

 0.12 0.07 0.10 0.05 

𝑟𝑚𝑠(𝐹𝑖𝑛𝑡𝑒𝑟
𝑒 − 𝐹𝑖𝑛𝑡𝑒𝑟

𝑠 )

‖𝐹𝑖𝑛𝑡𝑒𝑟
𝑒 ‖

∞

 0.13 0.05 0.13 0.04 

 971 

Ratio between root mean square error RMS between experimental and simulated data and the 972 

maximum value for the cart and pendulum trajectories and interaction force. The results are separated 973 

for the two frequency groups. The simulated data were obtained with forward simulation of the coupled 974 

model, using the optimized values of K and B for each trial (i.e. the values for which the cost C was 975 

minimum).  976 

 977 

The values of hand impedance were different between groups. The comparison of stiffness and 978 

damping values between the two frequency groups was performed with a Wilcoxon signed rank test 979 

because the data were not normally distributed. Both the stiffness K and damping B were significantly 980 

lower in the low-frequency group, with p = 10e-10 and p = 10e-13 respectively. This is consistent with 981 
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the known fact that, for a similar task accuracy, limb stiffness usually increases with movement speed.  982 

 983 

These results are the basis for characterizing experimental trials with hand impedance. The coupled 984 

model with optimized K and B reproduced experimental trajectory and force time-series much more 985 

accurately than the uncoupled model (especially for the low-frequency group), thus confirming its 986 

better competence to analyze the experimental task. 987 

 988 
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 1182 

Figures captions 1183 

 1184 

Fig 1. Model of the task. A: Conceptual model of the cup-and-ball system. B: Mechanical model of 1185 

cup-and-ball dynamics as a cart-and-pendulum system. 1186 

 1187 

Fig 2. Experimental set-up of the ball-and-cup task using virtual reality and force feedback. A: 1188 

Rendering of the task in the virtual environment: the robotic manipulandum provided haptic feedback 1189 

of the mechanical interaction with the object, while the behavior of the system was displayed online on 1190 

the back-projection screen. The physical model used the distances shown on the figure, while the 1191 

distances displayed on the screen were multiplied by a factor of 4 for visibility. The cup displayed was 1192 

7.5 times smaller than the physical arc determined by the length of the pendulum. B: A participant 1193 

using the HapticMaster to interact with the simulated cup-and-ball system. The position of the cup was 1194 

controlled by the position of the end-effector of the robot. 1195 

 1196 

Fig 3. Distribution of frequencies adopted by all participants when manipulating the virtual cup-1197 

and-ball system. The histogram represents the frequencies fk of every single cycle of the 433 valid 1198 

trials (total: 7350 cycles). Note that the x-axis is in log scale. 1199 

 1200 

Fig 4. Experimental cart and pendulum trajectories. Representative trajectories of the cart (top 1201 

panel) and pendulum (bottom panel) from one participant who chose the low-frequency strategy (A) 1202 

and one participant who chose the high-frequency strategy (B). With the low-frequency strategy the 1203 

cart and pendulum movements were in-phase, and the pendulum oscillations were large. With the high-1204 
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frequency strategy the cart and pendulum movements were anti-phase and the pendulum oscillations 1205 

were smaller. 1206 

 1207 

Fig 5. Evolution across trials of the experimental kinematic variables. A: Amplitude A of the cart 1208 

oscillations. B: Frequency f of the cart oscillations. C: Relative phase between the cart movement and 1209 

the pendulum movement. Note that the amplitude A is defined as the half-distance between the cup 1210 

extrema. Each of the 433 valid trials was represented by one single value of A, f and 𝜃́0 𝜃́𝑚𝑎𝑥⁄  by 1211 

averaging across all the cycles within 20 ≤ t ≤ 40 s in the trial. The blue and red colors correspond to 1212 

the two frequency groups. The thick lines denote the mean across participants; the shaded areas denote 1213 

the standard deviations across participants.  1214 

 1215 

Fig 6. Evolution across trials of the result variables. Evolution of the experimental (A, C) and 1216 

simulated (B, D) result variables root mean square interaction force RMSF and mutual information MI 1217 

across trials. The experimental variables were computed from the measured time-series. The simulated 1218 

variables were computed from time-series obtained by simulation of the coupled model (described 1219 

below). The simulations were run using the experimental values of the cart amplitude and frequency. 1220 

The solid lines represent the average over all participants in each of the two frequency groups, and the 1221 

shaded areas represent one standard deviation. 1222 

 1223 

Fig 7. Model used to analyze the dynamics of the task in simulation.  Forward dynamics of the cart-1224 

and-pendulum system coupled to a model of hand impedance. 1225 

 1226 

Fig 8. 3D plot and 2D contour map of RMSF in the space of the execution variables. A: 3D plot of 1227 
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the root mean square interaction force RMSF in the space spanned by the three execution variables f, K 1228 

and B. The green shading represents areas of low interaction force, RMSF < 3 N. B: 2D map of RMSF 1229 

in the space spanned by two of the execution variables: f and K. The hand damping B was fixed at 10 1230 

N.s/m. The blue dots represent the strategies (f, K, B) adopted by participants in the experiment. The 1231 

dark blue dots correspond to trials for which the impedance fit was good (cost C < 0.15, 80 % of trials); 1232 

the lighter dots are trials where 0.15 < C < 0.20 (12 % of trials). The trials where the impedance fit was 1233 

poor (C > 0.20) are not represented since they were not reliable (8 % of trials). The cost C is defined in 1234 

Appendix B. 1235 

 1236 

Fig 9.  3D plots and 2D contour map of MI in the space of the execution variables. A: 3D plot of 1237 

the mutual information MI between the cart trajectory and interaction force in the space spanned by the 1238 

three execution variables f, K and B. The pink shading represents areas of high mutual information, 1239 

MI > 1.2 nat. B: 2D map of MI in the space spanned by two of the execution variables: f and K. The 1240 

hand damping B was fixed at 10 N.s/m. The blue dots represent the strategies (f, K, B) adopted by 1241 

participants in the experiment. The dark blue dots correspond to trials for which the impedance fit was 1242 

good (cost C < 0.15, 80 % of trials); the lighter dots are trials where 0.15 < C < 0.20 (12 % of trials). 1243 

The trials where the impedance fit was poor (C > 0.20) are not represented since they were not reliable 1244 

(8 % of trials). The cost C is defined in Appendix B. 1245 

 1246 

Fig 10: Bode amplitude and phase plots of the linearized coupled model, for different values of 1247 

hand impedance. A: K = 100 N/m and B = 10 N.s/m, typical for the low-frequency group. B: K = 200 1248 

N/m and B = 15 N.s/m, typical for the high-frequency group. Note that the pendulum amplitude plots 1249 

have different scales in A and B. The phase plots of the cart and pendulum are superimposed to 1250 
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highlight the synchronization of their movements. For comparison, the grey histogram represents the 1251 

distribution of frequencies adopted by participants in the experiment (identical to Fig 3). The part of the 1252 

graph right (resp. left) of the anti-resonance frequency is greyed out because it is not relevant for 1253 

system A (resp. B) with values of K and B for which the frequency analysis was performed. 1254 

 1255 

Fig A1. Model of the dynamics of the task. Inverse dynamics model of the cart-and-pendulum system 1256 

alone.  1257 

 1258 

Fig A2. Comparison of experimental and simulated trajectories and force time-series for the 1259 

uncoupled model. Experiment (red) and simulation (blue) profiles of the cart trajectory, pendulum 1260 

trajectory and interaction force for one trial of each frequency strategy. Experimental data correspond 1261 

to one representative trial in each of the two frequency strategies. Simulation data were computed from 1262 

inverse dynamics of the uncoupled model, initialized with the experimental values of A, f, θ0 and 𝜃́0. A: 1263 

High-frequency strategy (A = 8.9 cm, f = 1.182 Hz, θ0 = -0.31 rad, 𝜃́0 = -0.05 rad/s). B: Low-frequency 1264 

strategy (A = 8.8 cm, f = 0.655 Hz, θ0 = 0.79 rad, 𝜃́0  = -0.08 rad/s). 1265 

 1266 
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