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Abstract— For robotic systems to interact with or learn from
the actions of surrounding humans, it is important that they
can accurately interpret the intention driving human motor
actions. Making such interpretations, however, requires the
ability to perceive the relevant feature(s) from the observed
human behavior. With visual sensing alone, robots are typically
limited to perceiving only the human’s overt motion in the
form of joint angles and positions. Ideally, robots designed to
interface with humans would also be able to infer information as
to how the human is controlling itself from that overt motion. In
this study, we investigated if and how humans might be able to
visually sense changes in limb mechanical impedance of others.
Results indicated that humans can visually perceive changes
in joint stiffness from the motion of a two-link planar arm,
suggesting that humans can extract information regarding how
humans control limb impedance from kinematic information.
These findings have important implications for applications
where robots must interpret the motor actions of humans, such
as during robot imitation learning and human-robot physical
interaction.

I. INTRODUCTION

Robotic systems are becoming increasingly autonomous
and prevalent in everyday life. The success of their assim-
ilation into human society, however, will critically depend
on their ability to interact and coordinate with humans. To
effectively operate with or in the vicinity of humans, robots
need to perceive and interpret the actions of humans. To
perform robustly in ever-changing human environments, it
would be also advantageous for robots to learn not only
from their own action and outcomes, but to also learn from
observing actions and interactions of others, just as humans
do [1]. Hence, the ability to interpret human action is a
ubiquitous need for integrating robotic systems into human
life.

Interpreting human control or intention from motion is
still a challenge. This is because only the overt motion of
the person can be visually perceived. The hidden features
that actually generate the motion, such as muscle activation,
or the neuromotor commands that control motion cannot be
seen [2], [3]. This limitation presents a challenge for de-
veloping controllers for successful human-robot interaction,
as well as for robot imitation learning. Only the features
of human motor behavior that can be perceived or observed
can be imitated. Due to this constraint, a robot learning from
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visual observation is often limited to matching the joint and
end effector motion of the human demonstrator [3].

Interpreting the motor actions of others, and subsequently
learning from them, is a critical process in human sensorimo-
tor skill acquisition [4], [5], [6], [7] and motor development
[8], [9]. Yet, our understanding of how humans learn to inter-
pret and imitate the motor behavior of others is limited. The
current challenges in robot imitation learning speak to this
limited understanding. At present, robot systems are capable
of mapping sensory information into motor actions through
human-inspired learning techniques such as reinforcement
learning [10]. When learning from human demonstration,
however, it is unclear what aspects of the demonstrated motor
action should be perceived and learned by the robot [3]. This
major barrier in robotics research highlights a knowledge
gap in our understanding of human observational learning.
We have limited insight as to what perceptual information
humans use to understand and learn from the motor behavior
of others.

It has been proposed that humans use their own motor
system to understand actions and identify biological motion
[11]. Neuroimaging evidence [12], [13] suggests that humans
have a mirror-neuron system, such that the same neural cir-
cuitry is active during both the execution and observation of
a task. It is hypothesized that by mapping observed actions in
the motor system, the observer gains knowledge of how those
actions may be internally controlled [14]. On one hand, this
might suggest that if the system being imitated has different
“rigid body properties” than a human, imitation learning
would have to occur via other processes. On the other hand, if
the features that humans perceive and mimic are independent
of the rigid body properties of demonstrator, then imitation
learning and action understanding of human and non-human
systems should be similar. Behavioral evidence suggests that
infants [8], [9] and primates [15] can imitate motor behavior
of adult humans, which would support the latter notion that
humans may be able to understand and imitate motion despite
large differences in rigid body properties. Identifying such
features would point to new approaches for robot imitation
learning as well as human-robot interaction.

One possibility is that humans can perceive the dynamic
properties, or impedance, of the demonstrators limb. Not
only is limb impedance a feature that is superimposed on
the rigid body structure of the demonstrator, the control and
regulation of limb impedance is an important process in
human motor control and learning [16], [17], [18], [19], [20],
[21], [22], [23]. Thus it is possible that humans can sense
and utilize such information for understanding the actions of
others. Prior studies have demonstrated that human stiffness



[28] and viscosity [29] can be perceived with proprioceptive
information. It is untested, however, whether humans can
also perceive such properties with vision alone.

Recent research in robotic tele-operation demonstrates
how sensing and replicating human-like impedance control
can improve robot control. Howard et al. [24] identified
imitating variable impedance control of humans as a promis-
ing approach to allow robots to be compliant, yet precise.
Moreover, they demonstrated that feature-based tracking and
imitation of human impedance (e.g., equilibrium position
and stiffness) can be effective for online, interactive control
of a robotic arm. Ajoudani et al. [25] have also proposed
a similar method for imitating human motor actions by
estimating the equilibrium positions and impedance profiles
of human arm motion and using these parameters in the
teleoperation of a robot arm. Both of these studies, however,
used electromyography (EMG) to estimate limb impedance
of the human controller. For robots to interpret and learn
from human motion in real world applications, it would be
advantageous to sense limb impedance without additional
sensors placed on the human.

In this study, we address the novel question of whether
humans can visually perceive changes in joint stiffness from
the multi-joint motion of a simulated arm. The results of
this study significantly contribute to our understanding of
how humans visually perceive and interpret the actions of
other humans and even other robots. Thus, these results
also suggest important considerations for any autonomous
robot system that learns from or interacts with humans. The
remainder of the paper is organized as follows. Section II
describes two human experiments in which we tested the
prediction that humans perceive changes in the stiffness
properties of a simulated moving arm. Section III presents
the group and individual results from these two experiments.
Section IV discusses our interpretation of the experimental
results and their important implications for robotic imitation
learning and human-robot interaction.

II. APPROACH

We conducted two experiments in which we asked subjects
to watch simulated motions of a 2 link planar arm and
rate the stiffness of the arm on a numeric scale. Note that
the known challenges in estimating individual joint stiffness
from human motion motivated our use of a simulated arm
in the this study. In Experiment 1, the stiffness of the elbow
joint was varied across simulations, and in Experiment 2, the
stiffness of the shoulder joint was varied. For both experi-
ments, we hypothesized that there would be a positive linear
relationship between the respective joint stiffness values used
in simulation and the arm stiffness rated by the subject.

A. Participants

A total of ten subjects participated in the experiments (3
males and 7 females with a mean age of 23.56 ± 4.72 years).
Subjects had a variety of educational backgrounds, including
engineering, computer science, material science, and biology.
Five subjects participated in Experiment 1, and five subjects

participated in Experiment 2. Each subject participated in
only one experiment, and none had any prior experience with
the experimental task. All subjects gave informed written
consent before the experiment. The experimental protocol
was reviewed and approved by the Institutional Review
Board of the Massachusetts Institute of Technology.

Fig. 1. In each of the trials, subjects viewed a two-link planar arm moving
in periodic fashion for 20 seconds (left). After watching the simulated
motion, a new screen appeared asking subjects to rate the ”arm stiffness”
during that motion on a Likert scale from 1 to 7 (right).

B. Experimental Task

Subjects sat in front of a computer monitor which dis-
played a custom graphical user interface developed in MAT-
LAB (The Mathworks, Natick, MA). With this interface,
subjects viewed and subsequently rated the stiffness of the
simulated arm motions in the two experiments (Figure 1).

In each trial, subjects watched a simulated two-link arm
rhythmically move its endpoint along an orbital path for
twenty seconds. Directly following the simulated motion,
subjects rated the “arm stiffness” on a Likert scale from
1 to 7 for that trial. A rating of 1 indicated that the arm
was “least stiff”, and a rating of 7 indicated that the arm
was “most stiff”. In the event that a subject was unsure of
what the term stiffness meant, s/he received the following
definition: “Stiffness is the extent to which an object resists
deformation or deflection in response to an applied force. A
stiffer object has higher resistance to deflections than a less
stiff object.” Subjects then clicked on a button to initiate the
next trial.

All subjects performed five blocks of six trials, for a total
of thirty trials. Each trial within a block displayed a different
simulated arm motion. In Experiment 1, the arm motion
was simulated with different values rotational stiffness at
the elbow joint (0, 10, 20, 30, 40, and 50 Nm/rad). The
range of elbow stiffness values used are similar to those
reported in human studies [26], [27]. For simplicity, we did
not mimic the observation that human joint stiffness changes
with posture and during movement [20], [26]. In Experiment
2, the arm motion was simulated with different values of
rotational stiffness at the shoulder joint (0, 10, 20, 30, 40,
and 50 Nm/rad). As we were unable to identify estimates
of human shoulder stiffness from the literature, we used the
same stiffness values in the Experiment 1 for consistency.
The order of the trials within each block was randomized.

After finishing the experiment, which lasted approximately
20 minutes, subjects were asked to qualitatively describe the



Fig. 2. In each experiment, subjects rated arm stiffness of 6 arm motions shown 5 times in randomized order. The value of elbow stiffness, E, was
changed to generate the arm motions shown in Experiment 1 (top panel). The value of shoulder stiffness, S, was changed to generate the arm motions
shown in Experiment 2 (bottom panel). Changing the joint stiffness values altered the endpoint and joint motion of the arm as shown.

strategy they used to determine their arm stiffness rating.

TABLE I
PARAMETERS OF THE SIMULATED ARM

Link 1 Link 2
Length (m) 0.2817 0.2689

Center of Mass (m) 0.1326 0.1434
Mass (kg) 2.0438 1.1749

Moment of Inertia (kgm2) 0.0039 0.0013

C. Simulating Arm Motion

The simulated arm was modelled as a two-link planar
manipulator moving in the vertical plane. The dynamics of

this model were described as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where
• q =

[
q1 q2

]T
are the joint angular positions,

• q̇, q̈ ∈ IR2 are the joint angular velocities and accelera-
tions, respectively,

• M(q) ∈ IR2×2 is the inertia matrix,
• C(q, q̇) ∈ IR2 are centrifugal and Coriolis force terms,
• g(q) ∈ IR2 are the gravitational force terms, and
• τ ∈ IR2 are commanded joint torques.
The length, mass, center of mass, and moment of inertia

parameters for the two links were chosen to match the fore-
arm and upper arm of an average, male human as described



in [30] (Table 1). In anatomical terms, q1 is considered the
shoulder joint angle, and q2 is considered the elbow joint
angle relative to the orientation of the upper arm.

The commanded joint torques were determined by

τ = J(q)TKx(x
d − x)− J(q)TKv(v

d − J(q)q̇)
+Kq(q

d − q)
(2)

where
• J(q) ∈ IR2×2 is the Jacobian matrix,
• x, xd, vd, qd ∈ IR2 are the end effector positions,

desired end effector positions, end effector velocities,
and joint angular positions, respectively, and

• Kx,Kv,Kq ∈ IR2×2 are the feedback gains for the
end effector positions, end effector velocities, and joint
angular positions, respectively.

For this study, this controller aimed to move the end
effector of the arm in a desired circular motion xd(t) =[
0.1 cos( 2t

0.3 ) 0.1 sin( 2t
0.3 )

]T
with a feedback gain of Kx =[

500 0; 0 500
]T

with a desired velocity of the end
effector set to vd =

[
0 0

]T
with a feedback gain of

Kv =
[
10 0; 0 10

]T
. At the same time, a desired joint

configuration of qd =
[
π
4
π
4

]T
was imposed on the arm with

a feedback gain of Kq =
[
S 0; 0 E

]T
. The shoulder

rotational stiffness, S, was set to 0 Nm/rad in Experiment
1 and set to either 0, 10, 20, 30, 40, or 50 Nm/rad in
Experiment 2. The elbow rotational stiffness, E, was set to
either 0, 10, 20, 30, 40, or 50 Nm/rad in Experiment 1 and
set to 0 Nm/rad in Experiment 2.

The values of rotational joint stiffness affect (1) the
resulting motion of the end effector, (2) the relative range
of motion between the joints, and (3) the relative range of
angular velocities between the joints as shown in Figure 2.

D. Dependent Measures

The arm stiffness rating on the Likert scale [31] served as
the primary dependent measure. Note that asking subjects
to rate arm stiffness on this scale introduces a mapping
error. This mapping error is analogous to the error resulting
from representing a continuous analog signal with discrete,
stepped digital data, known as quantization error [32]. For
our experiments, the estimated quantization error in the
Likert scale can be modelled as uniformly distributed noise
with a mean of zero and a variance of 0.69 when subjects
utilize the full range of the scale. The variance of the
quantization error, σ2

qe, was determined by

σ2
qe =

(smax − smin)(rmax − rmin)
12(n− 1)2

(3)

where
• smax, smin are the maximum and minimum values of

the joint stiffness conditions, respectively,
• rmax, rmin are the maximum and minimum values of

the Likert rating scale, respectively, and
• n is the number of equidistant units in the Likert rating

scale.

E. Statistical Analysis

For each experiment, we tested the prediction that arm
stiffness rating increases with the simulated joint stiffness.
To test this prediction, we conducted a 6 (Simulated Joint
Stiffness) x 4 (Block) repeated-measures analysis of variance
(ANOVA) on the arm stiffness rating for both experiments
[33]. Because it was difficult for subjects to gauge relative
stiffness ratings in the beginning of the experiment, their arm
stiffness ratings from the first block of trials were excluded
from all statistical analyses.

Posthoc polynomial contrasts tested the linear trend in arm
stiffness rating across the simulated joint stiffness levels. If
linear trends were significant in each experiment, the slopes
of the linear relationship between simulated joint stiffness
and arm stiffness rating were calculated for each subject.
A Student’s t-test was then conducted to test for group
differences in these slopes.

In all statistical tests, the significance level was set to
p < 0.05. Statistical analyses were performed using SPSS
Statistics for Windows, Version 24.0 (IBM Corporation,
Armonk, NY).

III. RESULTS

A. Experiment 1

The ANOVA of arm stiffness rating revealed a significant
main effect of simulated joint stiffness on arm stiffness
rating, F (5, 20) = 26.21, p < 0.001. As predicted, subjects
increased their arm stiffness rating as the simulated elbow
stiffness increased (Figure 3). There was no significant effect
of block, F (3, 12) = 0.07, p = 0.98, nor an interaction,
F (15, 60) = 1.02, p = 0.45. These results indicate that
subjects did not “learn” or significantly change their rating
pattern as the experiment progressed.

Posthoc polynomial contrasts revealed a significant linear
trend in arm stiffness rating across the levels of arm stiffness
as predicted, F (1, 4) = 66.03, p = .001.

B. Experiment 2

As in the previous experiment, the ANOVA of arm stiff-
ness rating revealed a significant main effect of simulated
joint stiffness on arm stiffness rating, F (5, 20) = 8.64, p <
0.001. Again, subjects had higher arm stiffness ratings for
arm motions simulated with higher shoulder stiffness values
as predicted (Figure 3). There was no significant effect
of block, F (3, 12) = 0.30, p = 0.82, nor an interaction,
F (15, 60) = 0.59, p = 0.88.

Posthoc polynomial contrasts revealed a significant linear
trend in arm stiffness rating across the levels of shoulder
stiffness as predicted, F (1, 4) = 11.57, p = .027.

The result of the t-test further revealed that there was
no significant difference in how subjects rated arm stiffness
when elbow stiffness changed compared to how subjects
rated arm stiffness when the shoulder stiffness chaged,
t(8) = 1.59, p = 0.15.



Fig. 3. In both experiments, there was a significant, positive linear effect of simulated joint stiffness level on the arm ratings made by subjects. In the
group results, the circles represent the group means and the error bars represent ± one standard error of the mean. For the subject results, each circle
represents a minimum of four ratings for each level of joint stiffness. Identical ratings are overlaid, this one circle may represent multiples of four ratings.
The black line represents the linear fit of each subject’s data. The R2 value of the linear fit is reported in the bottom corner of the corresponding plot.

IV. DISCUSSION

Prior research suggests that humans tune the dynamic
properties of their limbs to stabilize and control their
movements. It is has been proposed that modulating limb
impedance allows humans to coordinate complex, multi-joint
movements [20], [34]. Controlling impedance is also impor-
tant for maintaining stability during physical interactions and
tool use [35]. Thus, extracting such control-relevant infor-
mation as how to humans modulate impedance during a task
would be informative for robot imitation learning and human-
robot interaction. However, limb impedance is modulated
through muscle activation, which cannot be directly observed
with vision. Hence prior work aimed at imitating human
impedance profiles during motion relied on signalling from
EMG [24], [25].

In this study, we investigated if humans can perceive
changes in joint stiffness strictly from overt motion. If
humans can perceive joint stiffness and we can understand
how they are perceiving stiffness changes, then this form
of perception could be replicated and used in the control of
robotic systems. As predicted, the results of two experiments
demonstrated that humans can visually perceive changes in
both elbow and shoulder stiffness. Not only was there an
effect of joint stiffness on the arm stiffness rating, the effect
was positive and linear as predicted. The majority of subjects
had very strong linear relationships between simulated joint
stiffness level and arm stiffness rating (Figure 3).

There were, however, a small number of subjects who
appeared to be less successful at perceiving changes in joint
stiffness. One potential reason for this could be variations

in measurement noise caused by rating on a Likert scale. If
subjects used only a subset of rating values as opposed to
using the whole range of the Likert scale, there would be
more noise in their rating responses. For example, Subject
10 limited their responses to between 3 and 6 on the rating
scale, which means that the noise in their rating signal had
a variance of 1.39 from Eq. (3). This is a two-fold increase
in noise variance compared to the subjects who used the
full range of the rating scale. This increased variance in the
measurement noise could have caused poorer linear fits for
some subjects.

Besides increased measurement noise, another possible
reason is that subjects may have used different strategies
to determine their ratings of arm stiffness. As previously
mentioned, changing the values of rotational joint stiffness
affected the resulting motion of the end effector, along with
range of motion and velocity of the joints. It is possible
that rating arm stiffness from certain features yielded more
reliable rating responses than others.

For this study, we purposely kept the definition of “arm
stiffness” vague for subjects rather than directing subjects
attention to specific joints. We also chose not to show
subjects examples of the different stiffness conditions before
they performed the experiment. While this left the term
“arm stiffness” up to the interpretation of each subject, it
also allowed us to further examine how humans naturally
perceive these changes without the influence of instruction.
For implementing such perception capabilities on a robotic
system, identifying the specific features of motion that give
the most reliable estimates of joint stiffness is critical.



After performing the experiment, subjects reported a va-
riety of strategies used to rate arm stiffness. Although it
should be noted that many subjects could only describe their
strategy in vague terms, the majority of subjects reported
using the change in elbow and shoulder range of motion to
make their ratings. The change in angular velocity of each
joints was also reported as a strategy. At face value, it may
seem obvious that subjects used range of joint motion to
detect joint stiffness, but subjects were not informed that
joint stiffness would change, let alone which joint stiffness
would change across trials. When the elbow stiffness was
increased in Experiment 1, the range of motion of both joints
decreased. Thus, subjects could have used the change in
range of motion of either joint for determining their ratings.
When the shoulder stiffness was increased in Experiment 2,
however, the range of motion in the shoulder joint decreased
and the range of motion in the elbow joint increased (Figure
2). And yet, subjects in Experiment 2 were still able to
correctly perceive changes in stiffness. In fact, subjects in
both experiments always had a positive relationship between
joint stiffness level and their arm stiffness rating. These
results suggest that subjects are not necessarily relying on
information from a single joint, but rather they are integrating
information about the motions of both joints to perceive
changes in joint stiffness.

Interestingly, none of the subjects mentioned the term
“endpoint” or “hand position” when describing their rating
strategy. Note that subjects were not informed of the desired
motion of the end effector in the simulation. While subjects
did not explicitly report using the changing shape of endpoint
motion as their criterion for rating stiffness, it is still possible
that they used this knowledge unknowingly [1]. Future
experiments with a redundant simulated arm will allow us
to determine if humans can still perceive changes in joint
stiffness, even if the endpoint motion is the same. Future
research will also test how the results of this study generalize
to other desired endpoint actions, including those involving
physical interaction.

Ultimately, the results of this study show that subjects
can perceive changes in joint stiffness, which suggests that
limb stiffness is another observable feature of human motor
behavior. Moreover, it can be sensed without invasive or
obtrusive equipment on the human demonstrator and without
the need to perturb their motion. Further research is still
needed to have a complete understanding how of limb
impedance can be visually perceived, especially for cases
where high degree-of-freedom limbs are performing complex
actions with physical interaction. Additionally, it is still
an open question whether humans can similarly perceive
changes in other impedance properties such as inertia and
damping from visual information. Nonetheless, the results
of experiments presented here provide valuable first insights
into how humans perceive changes in joint stiffness. This
ability to estimate limb stiffness through vision, especially
from only kinematic information, is especially desirable for
robot imitation learning and teleoperation [24], [25], and
human-robot interaction [36].

Typically in robot imitation learning, both the joint angles
and end effector position of the human demonstrator are
imitated by the humanoid robot in order to make the robot
motion appear more human-like [37]. The premise is that if
the robot motion is human-like, it will be more legible or
predictable to humans [38]. The problem is that the “hard-
ware” of humans and robots is different, especially in terms
of kinematic structure, actuators, sensors, etc. While the
limb motion of the robot might be human-like, its dynamic
response to perturbations or physical contacts during motion
may not be human-like. Instead of matching joint angles,
an alternative approach may be to match limb impedance.
This approach may allow for safer interaction between robots
and their environment as well as humans and robots, which
is important when robots are deployed for use in novel
and ever-changing environments such as a home or factory
setting.
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