
Physical Interaction via Dynamic Primitives
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Abstract Humans out-perform contemporary robots despite vastly slower
‘wetware’ (e.g. neurons) and ‘hardware’ (e.g. muscles). The basis of human sensory-
motor performance appears to be quite different from that of robots. Human haptic
perception is not compatible with Riemannian geometry, the foundation of classical
mechanics and robot control. Instead, evidence suggests that human control is based
on dynamic primitives, which enable highly dynamic behavior with minimal high-
level supervision and intervention. Motion primitives include submovements (dis-
crete actions) and oscillations (rhythmic behavior). Adding mechanical impedance as
a class of dynamic primitives facilitates controlling physical interaction. Both motion
and interaction primitives may be combined by re-purposing the classical equivalent
electric circuit and extending it to a nonlinear equivalent network. It highlights the
contrast between the dynamics of physical systems and the dynamics of computation
and information processing. Choosing appropriate task-specific impedance may be
cast as a stochastic optimization problem, though its solution remains challenging.
The composability of dynamic primitives, including mechanical impedances, enables
complex tasks, including multi-limb coordination, to be treated as a composite of
simpler tasks, each represented by an equivalent network. The most useful form of
nonlinear equivalent network requires the interactive dynamics to respond to devia-
tions from the motion that would occur without interaction. That suggests some form
of underlying geometric structure but which geometry is induced by a composition
of motion and interactive dynamic primitives? Answering that question might pave
the way to achieve superior robot control and seamless human-robot collaboration.
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1 The Paradox of Human Performance

Using tools is a hallmark of human behavior. While some animals have been shown
capable of making and using tools, this ability remains the distinctive signature that
has given humans an evolutionary advantage [10, 51, 53, 60]. Tool use requires
dexterous control of physical interaction, and we excel at it. Yet one of the most
critical features of the human neuromuscular system is that it is agonizingly slow.
The fastest neural transmission speed in humans is no more than 120 m/s [56]. That
compares very poorly with information transmission in electro-mechanical systems
such as robots, which can conservatively be estimated at 108 m/s, about a million
times faster. Moreover, muscles are slow. The typical isometric twitch contraction
time1 for the human biceps brachii is about 50 ms [56]. Assuming a linearized model
to approximate this behavior implies a bandwidth of about 3 Hz. In comparison,
electro-mechanical actuator technology routinely achieves bandwidths from tens to
hundreds of Hz [9, 76, 84] and can achieve motion up to 1 KHz, albeit in special-
ized applications [8, 77]. Furthermore, our brains are slow. A now-classical study of
human mental rotations to assess congruency of visually-presented objects demon-
strated a reaction time of about 1 second plus 1 additional second per 60◦ of rotation
(i.e. ∼4 s for a 180◦ rotation) [96].

Despite slow neurons, muscles and brains, humans achieve astonishing agility and
dexterity manipulating objects—and especially using tools—far superior to anything
yet achieved in robotic systems. Slow neuro-mechanical response implies that pre-
diction using some form of internal representation is a key aspect of human motor
control, yet the nature of that representation remains unclear [18, 27, 57, 111]. Con-
sider fly-casting or cracking a whip: These objects comprise flexible materials that
interact with complex compressible fluid dynamics and, in the case of whip-cracking,
operate into the hypersonic regime. Models of their behavior based on mechanical
physics tax even modern super-computers. The likelihood that anything resembling a
physics-based model underlies real-time human control of these objects seems slim,
yet some humans can manipulate them with astonishing skill. If humans use inter-
nal models for planning and predictive control of dynamic objects—which seems
likely—what form might their internal models take?

2 Human Performance Is Not Consistent with Riemannian
Geometry

To address this question we studied haptic illusions [26]. ‘Haptic’ refers to the com-
bination of motor and sensory information used when we feel objects, sometimes
also called ‘active touch’. ‘Illusion’ in this context refers to the fact that, like other
perceptual modalities (e.g. vision), haptic perception is distorted. Experimentally, it

1Twitch contraction time is the time from an impulsive stimulus (e.g. electrical) to peak isometric
tension.
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is observed that the perceived length of a line segment depends on its orientation
with respect to the subject; line segments oriented radially from the shoulder are per-
ceived as being longer than line segments oriented tangentially to circles centered at
the shoulder [63, 73]. Moreover, the amount of distortion is configuration dependent;
distortion becomes more pronounced as the center of the object moves away from
the shoulder [45].

During contact and physical interaction, afferent and efferent information is
acquired. Afferent information comes from mechanoreceptors such as cutaneous
and deep tissue sensors, muscle spindles, Golgi tendon organs and joint capsule
receptors [56]. Efferent information is available from so-called corollary discharge,
information available from motor areas of the central nervous system (CNS) that
project onto sensory areas [56]. Percepts of external objects are formed based on
afferent and efferent information acquired during interaction. Perception of objects
can be viewed as an integrative, computational process in which geometric proper-
ties are inferred from acquired efferent and/or afferent information, combined with
prior knowledge. Geometric properties of objects, such as lengths of segments, con-
tinuity of paths, angles between edges, etc., may be determined based on the spatial
stimulus alone. It therefore seems reasonable to describe the perceptual processes as
implementing an underlying, abstract geometrical reasoning system.

What geometric structure underlies human sensory-motor performance? A dis-
torted haptic perception might reflect a Riemannian geometry, consistent with classi-
cal mechanics. Riemannian geometry is a mathematically simple extension of Euclid-
ean geometry based on an inner product of vectors v and w denoted 〈v,w〉 = vT Gw,
where the metric G is characterized by a symmetric, positive-definite matrix. This
metric can vary from location to location and, in general, haptic perceptual distortion
is known to be location dependent [45]. In our study we were concerned only with
haptic perceptual distortion in a small region, hence we assumed the metric was
effectively constant.

Inner products provide measures of length and measures of angle. The length of
a vector v is the square root of the inner product of that vector with itself, ‖v‖ =
〈v, v〉1/2. The angle α between two vectors v and w may be determined from 〈v,w〉 =
‖v‖‖w‖ cos α. To be metrically consistent, the perception of length and angle must be
related. If the metric is constant in a given locality (as we assumed) the Riemannian
geometry corresponds to a linear stretch of Euclidean geometry (Fig. 1). If, due
to perceptual distortion, a certain rectangle is perceived to be square, then if that
rectangle is cut in half along the diagonal, a metrically consistent observer would
perceive the acute angles of the resulting right triangle to be equal.

To test the metric consistency of human haptic perception, we measured subjects’
judgment of length and angle at the same workspace location; details are in [26]. In
a length-judgment experiment, subjects felt rectangular holes oriented at 0◦ and 45◦
(the latter shown schematically in Fig. 2, Panel (a) and judged which pair of sides
was longer. The rectangular holes were simulated by a planar robotic manipulandum
with two degrees of freedom. Rectangles of the same area but with 15 different
aspect ratios were presented, allowing accurate assessment of the rectangle which
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Fig. 1 With a constant metric, a Riemannian geometry is a linear stretch of a Euclidean geometry.
Reproduced from [26]

Fig. 2 Panel a Subjects felt rectangular holes and were asked to judge which sides were longer. Panel
b Subjects felt triangular holes and were asked to judge which acute angle was larger. Reproduced
from [26]

was perceived to be square. That information for the two orientations was sufficient
to identify a metric underlying haptic length perception.

A metric can be used to generate geometrical shapes similar to Euclidean shapes.
For example, a Riemannian circle of radius r can be identified with the set of dis-
placement vectors of length r from its center,

{
v|vT Gv = r

}
. This is the equation

of an ellipse which can be used to depict the ‘subjective circle’ corresponding to
haptic length perception. The ‘subjective circles’ for 8 subjects were remarkably
similar, with an eccentricity of ε = 1.29 and a major axis oriented at θ = 17◦ counter-
clockwise from the line joining the shoulders (Fig. 3, Panel a).

In an angle-judgment experiment at the same location, subjects felt triangular
holes oriented at 0◦ and 45◦ (the former shown schematically in Fig. 2, Panel b)
and judged which acute angle was larger. To prevent inference based on judging



Physical Interaction via Dynamic Primitives 273

Fig. 3 Panel a Average subjective circles determined from the length experiment (ε = 1.29, θ =
17◦) and the angle experiment (ε = 1.28, θ = −62◦). Panel b The angle judgment experiment
implies the observer uses the distorted protractor shown on the left, which is perceived as the
Euclidean protractor on the right. Reproduced from [26]

the lengths of the perpendicular sides, the right-angled corner was inaccessible (see
[26] for details). Triangles with a constant base length and 19 different aspect ratios
were presented, allowing accurate assessment of the angles that were perceived to
be equal. That information for the two orientations was sufficient to identify a metric
underlying haptic angle perception. The ‘subjective circles’ corresponding to haptic
angle perception were more variable between subjects but had an average eccentricity
of 1.28 and a major axis oriented at –62◦ counter-clockwise from the line joining the
shoulders (Fig. 3, Panel a). This difference was highly significant (p < 0.01).

This is remarkable. Riemannian geometry is a foundation of mechanical physics.
Yet, at least in the context of haptic perception, the brain’s ‘internal representation’
is not consistent with Riemannian geometry.

3 Dynamic Primitives

Combined with the slow response of muscles, the long communication delays due
to slow neural transmission impair reactive control. It therefore appears that a major
component of human motor control requires planning and ‘pre-computation’ using
some internal representation of the relevant dynamics. Neural evidence has been
presented to support this hypothesis, and suggests that the cerebellum is one of the
major structures instantiating this ‘internal model’ [7, 111]. Prediction based on the
mathematical models of mechanical physics figures prominently in the control of
modern robots yet it appears that our ‘internal models’ are incompatible with those
of mechanical physics—even the underlying geometry is incompatible. Nevertheless,
humans substantially out-perform robots. What might be alternative bases for our
internal models?

One possibility is that human motor performance is based on dynamic primitives
[47, 48, 52]. A dynamic primitive is conceived as an attractor that emerges from
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the nonlinear dynamics of a neuro-mechanical system—a network of neurons and/or
their interaction with the musculo-skeletal periphery [20, 52, 97, 102]. Examples
include the familiar point attractor (which may underlie the maintenance of pos-
ture) and limit-cycle attractor (which may give rise to rhythmic behavior). Attractor
dynamics confers important stability and robustness. It also accounts for nonlin-
ear interference between primitives [19, 94, 100, 101]. Evoking or ‘launching’ a
dynamic primitive may require minimal central control and reduce the need for con-
tinuous intervention. At the same time, because each primitive is a highly dynamic
behavior, highly dynamic performance may be achieved.

4 Evidence of Dynamic Primitives

Biological evidence supports this account. The most compelling comes from obser-
vations of persons recovering their ability to move after having survived a stroke
(cerebral vascular accident) that left them partially paralyzed. In the course of study-
ing the feasibility and effectiveness of using physically-interactive robots to aid
neuro-recovery, kinematic records were obtained of the earliest movements made
by patients as they recovered [61]. These first recovered movements were conspicu-
ously fragmented. Even simple point-to-point reaching movements exhibited a highly
irregular speed profile, with large speed fluctuations and frequent stops. This is quite
unlike unimpaired movements, which tend to be smooth [29].

Remarkably, each of the movement fragments exhibited a highly stereotyped
speed profile—even for patients with brain lesions of widely differing location
and extent [61]. This suggests that human movements are composed of primitive
submovements. A submovement may be defined as an attractor that describes a
smooth sigmoidal transition of a variable from one value to another with a stereo-
typed time profile [47]. For limb position, the variable is a vector in some coordi-
nate frame, e.g., hand position in visually-relevant coordinates x = [x1, x2 . . . xn]T .
Each coordinate’s speed profile has the same unimodal shape which has finite sup-
port: ẋ j (t) = v̂ jσ (t) , j = 1 . . . n where v̂ j is the peak speed of the submovement;
σ (t) > 0 iff b < t < e where b is the time when the submovement begins and e is
the time it ends, otherwise σ (t) = 0; and the speed profile has only one peak: there
is only one point tp ∈ (b, e) at which σ̇

(
tp

) = 0 and at that point σ
(
tp

) = 1. This
definition was used to identify sequences of submovements underlying continuous
movements.

Reliably extracting overlapping submovements from a continuous kinematic
record is a notoriously hard problem. The common practice of examining zero-
crossings of progressively higher derivatives (acceleration, jerk, etc.) is fundamen-
tally misleading. Even aside from the practical difficulty of obtaining reliable higher-
order derivatives from kinematic data, a composition of two single-peaked speed pro-
files may yield a composite speed profile with one, two or three speed peaks, hence
one to five zero-crossings in the acceleration profile, etc. [92]. Instead, submove-
ment identification is better approached as an optimization problem, minimizing
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Fig. 4 Typical movements of one representative patient on the first and last therapy days. Bold lines
indicate tangential speed measured during movement. The later movement is briefer with a single
speed peak, while the earlier movement has an irregular speed profile with multiple peaks. Fine
lines indicate underlying submovements. The later movement shows fewer submovements which
have greater peak speed, duration and overlap than the earlier movement. Reproduced from [91]

mean-squared error between kinematic data and its reconstruction as a sequence of
submovements. That avoids the problems mentioned above and yields robust iden-
tification even in the presence of substantial measurement noise [92, 93].

This approach was applied to identify submovement sequences in the movements
of a cohort of 41 sub-acute and chronic phase stroke survivors as they progressed
through robot-aided therapy [91]. Although there was substantial variability across
patients, who had widely differing brain lesions, as they recovered they made fewer
submovements, which had higher peak speed, longer duration and greater tempo-
ral overlap; these changes were statistically significant (p < 0.05). Figure 4 shows
typical submovements of one patient observed on the first and last days of therapy.
These observations indicate that the ability to generate stereotyped submovements
appears to be preserved after injury to the CNS and that a major part of the recovery
process manifests as re-learning how to combine and blend these dynamic primitives
to produce desired behavior.

5 Consequences of Control via Dynamic Primitives

Motor control based on dynamic primitives may facilitate performance of highly
dynamic behavior without the need for continuous intervention by the higher lev-
els of the CNS. However, it may also lead to limitations of motor performance that
cannot be ascribed to biomechanics. In particular, the parameters of submovements
appear to be limited. Their maximum duration is typically on the order of a second.
There appears to be a ‘refractory period’, a minimum interval (on the order of 100
ms) between the onsets of adjacent submovements. Together, these limitations imply
that humans would have difficulty generating slow, smooth movements. Observations
of unimpaired human subjects have confirmed this prediction. In one experiment,
unimpaired subjects made horizontal planar discrete reaching movements between
two targets 14 cm apart in the mid-sagittal plane. Subjects were instructed to move
smoothly at three different self-paced speeds: ‘comfortable’, ‘fast’ (instructed to be
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Fig. 5 Tangential speed profiles of discrete reaching movements made by an unimpaired subject at
three self-paced speeds. Top ‘fast’; middle: ‘comfortable’; Bottom ‘slow’. Note the different vertical
scales. Slower movements were progressively more irregular

twice as fast as ‘comfortable’) and ‘slow’ (instructed to be twice as slow as ‘com-
fortable’). Averaged across subjects, peak speeds were 0.28 ± 0.04 m/s (mean ±
standard deviation) for ‘fast’ movements; 0.10 ± 0.03m/s for ‘comfortable’ move-
ments; and 0.05 ± 0.01m/s for ‘slow’ movements, demonstrating that subjects could
successfully follow task instructions.

Figure 5 shows typical speed profiles for the three cases. The ‘fast’ movement
has a single speed peak with a ‘bell-shaped’ profile similar to that of a maximally-
smooth movement [29]. The speed profile of the ‘comfortable’ movement also has a
single speed peak, but is noticeably more irregular. Irregularity of the speed profile
is most pronounced in the ‘slow’ movement, which has multiple peaks. Figure 6
shows a different set of movements for the three cases, and includes the minimal
sequences of overlapping submovements that fit the speed profiles with residual
error less than 3%. Each submovement has a support-bounded lognormal speed
profile, which may be lepto- or platy-kurtic and positively or negatively skewed [85].
With a statistical significance p < 0.01 the number of submovements increased with
movement duration: nslow > ncom f ortable > n f ast .

Taken together, these data provide strong evidence that discrete reaching move-
ments are composed of submovements. The observations of submovements in stroke
patients as they recovered was serendipitous (they were not the focus of the experi-
ments) but could not be overlooked. The observation that speed fluctuations increased
as unimpaired subjects moved slowly cannot be attributed to mechanics or biome-
chanics. Factors that might contribute to movement irregularity, such as the torques
required to compensate for nonlinear kinematic and inertial coupling between joints
or the nonlinear and noisy behavior of muscles, all decline as movements slow. The
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Fig. 6 Tangential speed profiles (left) and paths (right) of discrete reaching movements made by an
unimpaired subject at three self-paced speeds: ‘fast’ (top); ‘comfortable’ (middle); ‘slow’ (bottom).
The underlying sequences of submovements are superimposed. Colored dots denote the beginning
and end of each submovement

fact that, instead, they increased strongly implicates the ‘software’ underlying motor
control. Moving slowly and smoothly is hard for humans.

Similar results have been reported for rhythmic movements: unimpaired subjects
were unable to sustain smoothly rhythmic performance as period increased; instead,
kinematic irregularity increased as movement slowed, consistent with composition
as a sequence of submovements [22, 23]. A complementary result was reported in
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another study: unimpaired subjects made sequential back-and-forth discrete move-
ments, instructed to dwell at rest at the end of each movement for a duration equal to
the movement time. Movements were paced by a metronome which slowly decreased
its period. As frequency increased, subjects were progressively less able to sustain
the dwell at the end of movement, eventually producing smoothly rhythmic move-
ments. Importantly, changing the duration of the metronome sound (to 50% of the
metronome period) significantly reduced the frequency at which dwell time disap-
peared. In that case, the passage to zero dwell time cannot be attributed to biome-
chanical limitations, because with different sensory conditions subjects were demon-
strably capable of faster discrete movements with non-zero dwell time. Instead, sub-
jects switched to using an oscillatory dynamic primitive. This was confirmed by a
‘discreteness index’ which changed abruptly from values corresponding to discrete
movements to those corresponding to smoothly rhythmic movements [103].

6 Dynamic Primitives for Physical Interaction

Submovements and oscillations may provide a basis for unconstrained movements,
but contact and physical interaction are essential for that quintessentially human
ability, manipulating objects and using tools. It may seem reasonable to control force
when in contact with objects, but that is not sufficient. Simple hand tools illustrate
this point; many are elaborated versions of a stick that you push on. A woodworker’s
chisel is a stick with a sharpened tip; axial compression is required to cut with it. A
screwdriver is a stick with a specialized tip designed to mate with a corresponding
shape in the head of a screw; to use it effectively, it must be maintained in axial
compression.

Unfortunately, pushing on a stick destabilizes its posture. Consider a stick of length
R pushed against a surface. To keep matters simple, assume its tip cannot slip but may
pivot about the point of contact on the surface.2 If the stick is initially perpendicular
to the surface, the compressive force fc exerted by the hand on the stick must be
strictly axial, also perpendicular to the surface. Small angular displacements �θ of
the stick’s orientation from the perpendicular (which might arise from fluctuations
or “noise” in the neuromuscular system) displace the point of action of the force
laterally (i.e. parallel to the surface) by an amount �x ∼= R�θ . If the force exerted
by the hand is maintained constant in magnitude and direction, displacement evokes a
torque about the tip of τti p = fc�x ∼= ( fc R)�θ which acts to increase the deviation.
Force control in this situation is statically unstable [89].

To counteract this effect the hand must generate the equivalent of a lateral
translational stiffness kxx at the point of contact with the tool so as to produce a
lateral restoring force fx = −kxx�x . This generates a rotational restoring torque
τ = − (

R2kxx
)
�θ about the tip. The minimum stiffness required to maintain static

2This is one advantage of a Phillips (cross-head) screwdriver, invented by John P. Thompson, U.S.
Patent 1,908,080 May 9, 1933, assigned to Henry F. Phillips.
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stability is kxx > fc/R. This highly simplified analysis demonstrates a point that may
easily be overlooked: even in this idealized static task (nothing varies with time) to
exert a force independent of motion would be unworkable. Because the act of exerting
force may destabilize posture, stiffness must also be present to ensure stability, and
greater stiffness is required to stabilize greater forces. Humans generate the required
stiffness via the grip of the fingers on the handle, supported by the wrist, the shoul-
der, and so forth. Remarkably, because the minimum required stiffness increases with
applied force, the maximum force a human can exert in this task is determined by
the limits of muscle-generated stiffness rather than by the limits of muscle-generated
force [90].

Generating stiffness is a minimum requirement for controlling interaction. More
generally, other effects equivalent to viscous damping and/or higher-order phenom-
ena will also be required, collectively termed mechanical impedance. Loosely speak-
ing, mechanical impedance is a generalization of stiffness to encompass nonlinear
dynamic behavior [39, 44]. Mathematically, it is a dynamic operator that determines
the force (time-history) evoked by an imposed displacement (time-history). Phys-
ical interaction requires including mechanical impedances as an additional class
of dynamic primitives to describe force evoked by motion [47, 48]. Biologically,
mechanical impedance at the hand may be modulated by adjusting neural reflex
gains [37, 80], co-activating opposing muscles [38, 50], selecting the pose or con-
figuration of the limbs [42] or combinations of these approaches.

The practicality of mechanical impedance as a dynamic primitive underlying
human dexterity was demonstrated by implementing it in a ‘bio-mimetic’ controller
for a motorized trans-humeral amputation prosthesis [2]. Control inputs were derived
from surface myoelectric activity (EMG) obtained from antagonist muscles in the
limb residuum. The difference of their amplitudes determined a ‘zero-force’ trajec-
tory along which the prosthesis actuator torque was zero. Displacement from that
trajectory evoked torque determined by mechanical impedance that was implemented
as position and velocity feedback to a highly-back-drivable electro-mechanical actu-
ator. The sum of EMG amplitudes determined the prosthesis mechanical impedance,
mimicking the action of natural muscles [1]. Comparison of this controller with
conventional velocity control (difference of EMG amplitudes determined prosthesis
angular velocity with high mechanical impedance) showed a marked superiority,
especially in tasks requiring coordination of natural and artificial joints (e.g. accom-
modation of a kinematic constraint as in turning a crank), bi-manual coordination
and production of mechanical work [3, 86].

7 Combining Motion and Interaction Primitives

An important question is how interactive and motion primitives work together
to enable and potentially simplify dexterous manipulation. Two distinct domains
are involved. Motion planning belongs in the domain of ‘signals’ or information-
processing, which permeates conventional computation and control theory.
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Information-processing operations are uni-directional (input affects output but not
vice-versa) and the only constraints appear to be temporal causality (no output before
input) and boundedness (no infinite quantities). In contrast, interactions due to phys-
ical contact are fundamentally bi-directional—each system affects the other with
mutual causality, as expressed in Newton’s 3rd law [79]. They are subject to the numer-
ous additional constraints that arise from the storage and transmission of energy, e.g.
conservation of energy, production of entropy, etc.

A combination of dynamic behavior arising from computational information-
processing with that arising from physical systems may be described in a unified
framework by re-purposing and extending a remarkably effective tool of engineer-
ing analysis, the equivalent electric circuit. A comprehensive history of this concept
is presented by Johnson [54, 55]. Originally Helmholtz and later (independently)
Thévenin showed that any electric circuit containing electromotive forces (voltage
sources) and resistors could be replaced at any pair of terminals by a single voltage
source in series with a single resistor [34, 105]. Subsequently Mayer and Norton
simultaneously (and independently) formulated an equivalent electric circuit com-
posed of a current source in parallel with a resistor [75, 81]. The concept of impedance
introduced by Heaviside and its dual, admittance, allowed equivalent electric circuits
to be extended to include dynamic behavior (e.g. capacitance and inductance) [32,
33].

An electric circuit comprisingarbitrarily complicatednetworks of voltage sources,
current sources, and linear resistors, capacitors and inductors may be represented by
a Thévenin or Norton equivalent circuit. At a terminal pair where the circuit interacts
with its environment—an interaction port—it behaves as though composed of only
two parts with a simple connection. Moreover, each of those parts may be identified
unambiguously by simple experiments performed at the interaction port. This prodi-
gious simplification is one reason why equivalent circuits remain a core conceptual
tool of engineering analysis.

An equivalent circuit describes an interface between the domain of signals and
the domain of energy. In an audio amplifier, signals with negligible power (e.g.
retrieved from a storage medium or synthesized by a computer) control some of
the amplifier’s internal voltage and/or current sources which act to deliver sub-
stantial power to a loudspeaker, thereby generating sound energy. An equivalent
circuit ‘parses’ the dynamics of the entire audio amplifier into two pieces. The
Thévenin or Norton equivalent source describes the ‘forward-path’ dynamics relating
the low-power input signals to the high-power electrical excitation delivered to the
loudspeaker—independent of interaction with the loudspeaker. The equivalent admit-
tance or impedance describes the dynamics of the high-power interaction between
the amplifier and the loudspeaker—independent of the forward-path dynamics.

The equivalent circuit concept may be re-purposed to describe the relation between
the dynamics of computational information processing and the dynamics of physical
systems. The ‘equivalent source’ (Thévenin or Norton) describes unidirectional for-
ward path dynamics through which computation may influence physical events. The
‘equivalent resistance’ (admittance or impedance) describes bidirectional dynamic
interactions through which physical events evoke a physical response.
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Fig. 7 A nonlinear equivalent network relating the information and energy domains of dynamic
behavior. Reproduced from [43]

Equivalent circuits were originally applied to electrical systems with linear
dynamics. The concept is readily extended to non-electrical systems though, as gen-
eral physical systems do not necessarily form closed circuits, the term ‘equivalent
network’ is more appropriate. The concept may further be extended to important
classes of nonlinear systems, especially actuators (including mammalian muscles)
which occupy the interface between physical and informational dynamics [43].

Extending classical circuit theory to nonlinear systems combining informational
and physical dynamics provides a unified description of how central commands and
peripheral mechanics cooperate to produce observable behavior (Fig. 7). It specifies
how three classes of dynamic primitives may be related. Independent of interaction
with the environment, the ‘equivalent source’ describes the nominal unidirectional
forward-path dynamic response to central commands, which may consist of sub-
movements and oscillations. Bidirectional interactive dynamics (also modifiable by
central commands) are characterized by mechanical impedances. These two parts,
unidirectional and bidirectional, can be identified unambiguously by simple experi-
ments [43]. This disambiguation teases apart the contributions of mechanical dynam-
ics and the problems solved by computation.

8 Identifying the Equivalent Source Without
‘Opening the Box’

The challenge of describing and detailing human interactive dynamics is particularly
acute. First, the biological actuator (muscle) has notoriously complicated and highly
nonlinear dynamics [112]. Second, the neural control system is prodigiously com-
plicated and largely uncharted [56]. Third, there is as yet no ethical way to ‘open
the box’ and reliably observe relevant variables internal to the human neural control
system. To date, imaging technologies provide only a coarse-grained measure of lim-
ited parts of this system. If applicable, an equivalent network representation could
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summarize all of that complexity in a few elements that could (at least in principle)
be identified unambiguously from external measurements.

Can the equivalent source be identified during movement, i.e. when commands
from the central nervous system are changing? Several attempts have been made by
assuming a reasonable form for interactive dynamics (e.g. time-varying mass-spring-
and-damper behavior), identifying parameters of that model, and extrapolating from
the results. Unfortunately, the outcome is exquisitely sensitive to the assumed form
of the model—see [30] but compare with [31]. In fact, even the order of interactive
dynamics is not reliably known. For example, though it is reasonable to assume
that high-frequency behavior is dominated by skeletal inertia, yielding 2nd order
dynamics, in fact there is evidence of anti-resonance due to muscle mass moving
relative to skeletal inertia, and that requires higher-order dynamics [108, 109].

However, an equivalent network motion source can, in principle, be identified
without any knowledge of the neuro-muscular actuator impedance. A workable
method to do so during arm movements was presented in [36]. The essence of
the method was to estimate multi-variable skeletal inertia, then generate exogenous
forces with a robotic manipulandum so that the neuro-muscular forces were nom-
inally zero throughout a discrete reaching movement. The resulting trajectory was
the motion source of an equivalent network model of the neuro-muscular actua-
tor. Iteration over several nominally-identical movements was required to improve
the estimate and the exogenous forces were presented only on randomly selected
movements to preclude human adaptation to the stimulus. Passing over the details,
which are presented in [35, 36], a significant result was that, despite the intrinsic
variability of human motor control, the method converged rapidly. The result was a
reliable estimate of the motion source output, independent of any assumptions about
neuro-muscular mechanical impedance.

9 The Preferred Form of Equivalent Network Models

A linear equivalent circuit may be expressed in four different and fully interchange-
able ways: there are two choices for the equivalent source (Thévenin or Norton)
and two choices for the operational form of the interactive dynamics (admittance or
impedance—force in, motion out or vice versa). A nonlinear equivalent network is
more restricted. Because a nonlinear dynamic operator may not have a well-defined
inverse, the interactive dynamics may be expressible in only one of the two opera-
tional forms (admittance or impedance). For example, mammalian muscle is always
well-defined in impedance operational form (motion in, force out) but not necessarily
in admittance operational form.

The type of source may also be restricted. Key properties of physical system
dynamics manifest as symmetries or invariances—features that do not change when
other factors do. Noether’s theorem famously identifies conservation principles with
symmetries (e.g. energy conservation with time-shift invariance, etc.) [106]. One
desirable geometric symmetry for interactive dynamics is translation invariance. If
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the reference frame origin is translated, interactive behavior should not change. That
is, the commands required to perform a contact task should ideally be identical at
all locations. While this may be challenging in some cases—a fixed-based robot’s
limited workspace obviously limits translation invariance to within its reach—it is
highly desirable, at least within a region near the center of the robot’s workspace.
Translation invariance restricts the choice of equivalent source as follows.

For many contact and interaction tasks it seems natural for the forward path
dynamics to specify a nominal force (or torque) f0(t). Examples include the nominal
force that must be exerted by the feet on the ground during normal locomotion;
averaged over a gait cycle, the net vertical foot-ground force must equal the vehicle’s
(or animal’s) weight. Interactive dynamics (in impedance operational form) Z {·}
modify that nominal force based on actual motion x(t), f(t) = f0(t) − Z {x(t)}.

To clarify the following argument, consider that impedance is like a dynamic,
nonlinear version of a linear spring of stiffness k. In one dimension f = f0 − kx .
Further consider translating the coordinate frame to a new origin so that x

′ = x + c
where c is a constant. In the new coordinate frame f

′ = ( f0 + kc) − kx ′. In this
case, the translated ‘force source’ is f

′
0 = f0 + kc. This is not translation invariant; it

depends both on the origin of the coordinate frame c and on the stiffness k. The latter is
especially troubling as it compromises the separation of forward path dynamics from
interactive dynamics—yet that is one of the particular advantages of an equivalent
network representation.

Instead, consider an equivalent network with forward path dynamics that specifies
a nominal or ‘zero-force’ motion x0 (t). Interactive dynamics (in impedance opera-
tional form) generate forces in response to deviations of actual motion from nominal
motion f(t) = Z {�x(t)} where �x(t) = x0(t) − x(t). As above, impedance is like
a dynamic, nonlinear version of a linear spring of stiffness k. In one dimension
f = k(x0 − x). Again consider translating the coordinate frame to a new origin so
that x

′ = x + c. With x
′
0 = x0 + c, �x

′ = �x , hence f
′ = f and k

′ = k or, more
generally, Z

′ {·) = Z {·}. The advantages of an equivalent network representation have
been preserved.

Maxwell identified a correspondence between electrical and mechanical systems,
with electrical voltage analogous to mechanical force and current to velocity [74].
Using that analogy, a Norton equivalent network (i.e. with a motion source) is trans-
lation invariant whereas a Thévenin equivalent network (i.e. with a force source)
is not. Both the structure of the mathematical representation and (more important)
the separation of forward path dynamics from interactive dynamics are independent
of the choice of coordinate frame origin. It is interesting (and probably no coinci-
dence) that a Norton equivalent network also permits unambiguous identification of
the source term from observations made at the interaction port, while a Thévenin
equivalent network does not [43].

Summarizing, actuators such as muscles are at the interface between the computa-
tional dynamics of the information domain and the physical dynamics of the energy
domain. A nonlinear equivalent network provides a competent ‘canonical model’
of these dynamic objects that may be used to compare alternatives. An equivalent
network of the Norton (motion source) type appears to be superior, both unambigu-
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ously identifiable and invariant under coordinate frame translation. This may seem
counter-intuitive as some tasks seem naturally to require specification of nominal
forces. Nevertheless, the more robust description is in terms of nominal motion.

Remarkably, the human motor control system exhibits a strong preference to plan
motions rather than forces. Point-to-point reaching movements are generally exe-
cuted by an approximately straight, smooth hand path [29]. Exposed to mechanical
perturbations, subjects spontaneously adapt their muscle forces to restore an approx-
imately straight, smooth hand path [64, 95]. Exposed to a distorted mapping between
motion of the hand and motion of a cursor on a screen, subjects spontaneously adapt
their hand path to restore an approximately straight, smooth path of the screen cursor
[28]. This emphasis on motions is the basis of a successful robot-aided approach to
neuro-recovery [46].

10 Choosing Task-Specific Impedance

The most appropriate physical interaction dynamics varies with the task to be accom-
plished. One effective way to choose that dynamic behavior is to describe the task as
an optimization problem. Optimization is a powerful and general approach to robot
motion planning which has become more practical with advances in both computa-
tional speed and algorithmic sophistication [21, 62].

For optimization to yield specifications for interactive dynamics, the objective
function to be optimized should include terms involving both motion and ‘exertion’
at the interaction port. The term motion is here intended as an ‘umbrella’ label for
velocity and its integrals and derivatives (e.g. displacement, acceleration, etc.) The
term exertion is here intended as an ‘umbrella’ label for force and its integrals and
derivatives (momentum, force rate, etc.) The essential distinction between motion
and exertion is articulated in [43]. An interaction port is defined by any set of motion
variables and their energetic conjugates such that energy and its integrals or deriv-
atives are well-defined. Thus mechanical work is defined by W = ∫ fT dx where f
is a vector of forces or torques and dx is a vector of translational or angular dis-
placements. The displacements need not refer to the same physical location (e.g.
they may be displacements of a robot’s several degrees of freedom) provided the
corresponding forces are energetic conjugates such that work is correctly defined.

A simple ‘toy’ example may illustrate the point. Assume a manipulator and its
control system are modeled as a massmm moving in 1 degree of freedom, retarded by
linear damping b and driven by a linear spring referenced to a ‘zero-force’ point x0.
With no interaction force,mmẍ + bẋ = k(x0 − x). Assume the manipulator interacts
with an object modeled as mass mo such that both move with common motion
x . The connection between manipulator and object is an interaction port, and the
force exerted by the manipulator on the object is fo = moẍ . Further assume the
object is subject to stochastic perturbation forceswe, modeled as zero-mean Gaussian
white noise of strength S. Defining m = mm + mo, state-determined equations for
the coupled system are
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d

dt

[
x
v

]
=

[
0 1

−k/m −b/m

] [
x
v

]
+

[
0

k/m

]
x0 +

[
0

1/m

]
we

fo =
[
−mo

m
k−mo

m
b
] [

x
v

]
+

[mo

m
k
]
x0

The objective function should include force and displacement at the interaction port.
Define displacement �x = x0 − x and the objective function

Q = E

⎧
⎨

⎩
1

t f inal

t f inal∫

0

(
f 2
o

f 2
tol

+ �x2

�x2
tol

)
dt

⎫
⎬

⎭

where ftol and �xtol are tolerances on interface force and displacement. The state
(x, v) and output fo are random variables due to the presence of the stochastic input.
The expectation operator E {·} makes the objective Q a deterministic scalar. The
stochastic perturbation is included only to ensure the optimization yields non-trivial
stable solutions. Once a solution with non-zero noise strength S has been identified,
we may consider the limit as the noise strength approaches zero.

For simplicity, assume x0 (t) = constant = 0; i.e. the object is to be held at a con-
stant position despite perturbations. A summary of subsequent analysis is presented
in an appendix, based on a method presented in [38, 41]. A steady-state solution for
the optimal stiffness and damping is

lim
S→0

kopt = mm + mo

mo

ftol
�xtol

lim
S→0

bopt = √
2kopt (mm + mo)

The optimal damping coefficient bopt is such that the 2nd order coupled
system (manipulator plus object) has a dimensionless damping ratio of
ζ = bopt/2

√
kopt (mm + mo) = √

2/2. As a result the 2nd order frequency response
function relating object motion to perturbations is ‘optimally flat’ up to a break fre-
quency defined by the optimal stiffness and the total mass, manipulator plus object.

The optimal stiffness kopt is proportional to the ratio of force tolerance to dis-
placement tolerance. That is physically reasonable; if an object is delicate and can-
not tolerate large applied forces, the manipulator should be compliant in proportion.
Perhaps less obvious is that the optimal stiffness is also proportional to the ratio
(mm + mo) /mo of total mass (manipulator plus object) to object mass. As a result
the 2nd order frequency response function relating object motion to perturbations has
a break frequency 	break independent of manipulator mass.
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	break =
√

kopt
mm + mo

=
√

1

mo

ftol
�xtol

A minimal stiffness kopt = ftol/�xtol of would be obtained if the object mass was
much larger than the manipulator mass apparent at the interaction port. That may be
achieved with some of the newer designs of back-drivable or compliant robot ‘hands’
or end-effectors [83]. Unfortunately, the converse is usually true. For a typical robot,
the mass apparent at its gripper dwarfs the mass of the objects it can manipulate.
Greater manipulator apparent mass implies greater optimal stiffness for the same
ratio of force and displacement tolerances.

Despite its simplicity, this ‘toy’ example may provide insight. Apparent mass
matters, even if the emphasis is on choosing the optimal stiffness, e.g. to be imple-
mented via one of the recent variable-stiffness actuator designs [11, 107]. Apparent
mass includes actuator inertia, ‘reflected’ or transformed through the transmission
system relating end-effector motion to actuator motion. Electro-mechanical robot
transmissions commonly include high-ratio gear trains to amplify motor torques.
That dramatically increases the motor’s contribution to end-effector apparent mass,
which is proportional to the square of the gear ratio. A recent study of a commercially-
available robot showed that the contribution of its motors to end-effector apparent
mass was more than 2.5 times the contribution of its link segments [49].

This ‘toy’ example also hints at one of the challenges of choosing impedance. Con-
structing an objective function to include terms involving both motion and ‘exertion’
at an interaction port is straightforward but solving the resulting optimization prob-
lem is not. Even this linear 1 degree of freedom example with 2nd order dynamics
required solving 6 simultaneous nonlinear differential equations, and only a steady-
state solution was presented (see Appendix). The complexity of the computational
problem may be expected to grow exponentially with the number of degrees of free-
dom and the order of the dynamics associated with each degrees of freedom. Some
tasks—especially if they require active vibration absorption—will require higher-
order interaction dynamics. Furthermore, a general task will require a time-varying
‘trajectory’ of impedances rather than a steady-state time-invariant solution. Power-
ful methods for numerical optimization are now available but unfortunately, variable
impedance makes the optimization non-convex, and this appears to be fundamen-
tal. Nevertheless, despite the formidable challenges, solutions have been presented
[12, 13, 72]. Advances in computational algorithms and processing power may be
expected to yield further progress.

11 Using Composability to Meet Multiple Task Objectives

Unlike the ‘toy’ example above, realistic tasks may have multiple objectives which
may present conflicting requirements. In addition, realistic tasks are commonly per-
formed against the backdrop of other ongoing activities, which may interfere. For



Physical Interaction via Dynamic Primitives 287

example, fly-casting is usually performed from a standing position. The required
arm motions generate inertial and gravitational perturbations to balance and pos-
ture; in turn, changing posture influences those arm motions. In principle, multiple
conflicting goals may be incorporated into a single optimization problem; indeed, a
well-formulated objective function must quantify some compromise between con-
flicting requirements if a non-trivial solution is to be identified. In principle, all of the
human body’s roughly 200 degrees of freedom could be included in the dynamics of
the system to be optimized. Unfortunately, the exponential growth of computational
complexity with degrees of freedom renders all but the simplest problems infeasible;
this is Richard Bellman’s notorious ‘curse of dimensionality’.

Even if continuing advances in algorithms and processor speed may push back the
boundaries of what can be computed in practice, it seems doubtful that global opti-
mization is the best description of processes underlying human motor control. The
composability of dynamic primitives provides an alternative. ‘Composability’ refers
to the fact that dynamic primitives may be combined to produce more complex behav-
ior. Experimental evidence indicates that some human movements are composed of
a sequence of overlapping submovements (Figs. 4, 5 and 6). Oscillatory movements
may also be combined, though there appears to be a strong preference for a limited set
of phase relations between component oscillations [58, 59, 98, 99, 104]. Mechanical
impedances are also composable. Remarkably, multiple impedances may be com-
bined by linear superposition, even if the interactive dynamic relations they embody
are nonlinear [39, 41]. This is due to a fact of Newtonian mechanics: an inertial
object such as the skeleton or a tool determines acceleration in response to the linear
sum of forces to which it is subjected.

Taking advantage of composability can dramatically simplify control. A simple
example illustrates this point. Exerting force on a tool requires producing a concomi-
tant minimum stiffness [90]. Expressed as an equivalent network, the required static
behavior may be written as f = k (x0 − x) where f, k and x are end-point force, stiff-
ness and position and x0 is the zero-force position. This may be transformed to joint
coordinates as τ = J T (θ) k (x0 − L (θ)) where τ and θ are joint torque and angle,
x = L (θ) describes the forward kinematics and J (θ) its derivative, the Jacobian
matrix. With a high-level controller that specifies k and x0 and controllable-torque
actuators, that expression may be implemented as a nonlinear joint-space controller
to achieve the specified end-point equivalent network behavior.

With kinematic redundancy—more joint than end-point degrees of freedom
(dim θ > dim x)—that equivalent network alone is insufficient to control config-
uration. Many joint configurations θ yield the same stiffness f = k (x0 − x) and
‘null-space’ motions that leave x unchanged are unaffected by this controller. How-
ever, configuration may be managed by a controller that implements a joint-space
equivalent network behavior τ j = K�θ = K (θr − θ) where K is a non-singular
joint-space stiffness and θr is a zero-torque configuration. Even though one of these
controllers is nonlinear, they may be superimposed by simple addition to achieve
desirable behavior, τnet = τ + τ j = J T (θ) k (x0 − L (θ)) + K (θr − θ). This com-
posite controller readily manages redundant degrees of freedom. Importantly, inver-
sion of the kinematic equations is not required. Not only is a difficult computational
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problem avoided but, unlike controllers that fundamentally require inversion of the
kinematic equations, this approach is indifferent to kinematic singularities. It can
operate at and into kinematic singularities (e.g. at maximum reach).

12 Modulating Inertia via Multi-limb Coordination

Managing redundant degrees of freedom is especially important for modulating iner-
tial behavior, which dominates interactive dynamics at the transitions between free
and constrained motion. Modulating a robot’s inertial behavior using feedback con-
trol is challenging. It usually requires expensive and delicate force/torque sensors.
Moreover, the extent of feedback modulation of inertial behavior is severely con-
strained if contact stability is to be guaranteed [14, 16]. However, choosing the
configuration of the joints has a profound influence on the inertial behavior apparent
at a point of contact such as the hand [40]. Importantly, it allows inertial dynamics,
which determine the magnitude of impulsive forces, to be pre-tuned prior to contact
thereby avoiding possible problems with time delays due to reactive control.

The advantages of dynamic primitives and the composability of impedance extend
to multi-limb coordination. Controlling inertia with a single limb is challenging
due to the distribution of physical inertia along the limb segments. In particular,
translational force impulses almost always induce undesirable rotational motion.
In contrast, two-handed control of interaction with a tool affords advantages. In
particular, with two hands, the inertial terms that couple translational impulses to
rotational motion can be made to cancel, making the response to the collision that
occurs on contact fundamentally more predictable.

Unfortunately, wielding a tool with two hands ‘closes the kinematic chain’ relating
joint motions to end-point motions. Closed-chain kinematic equations are notoriously
challenging. However, this challenge may be avoided entirely by taking advantage of
the composability of impedance. If the motion of the two hands at the point of contact
with the tool is common (more generally, if they are kinematically related through
the tool) their interactive behaviors superimpose linearly. Each limb may be endowed
with stiffness as described above based on the open-chain kinematics of each limb
separately (and without inverting its kinematic equations). The net stiffness of both
arms interacting with the tool is simply the sum of their individual stiffnesses. The
net inertia of both arms interacting with the tool is the sum of their individual inertias.
The undesirable coupling terms of the ‘left’ arm are generally equal and opposite to
those of the ‘right’ arm; combined, they cancel.

The above considered only stiffness and inertia. Dissipative behavior (e.g. damp-
ing) is also important, indeed essential to ensure stability. Once again, the com-
posability of impedance allows damping terms to be implemented independent of
stiffness or inertia, separately for each limb (or even for each joint), then combined
by simple superposition. Higher-order dynamic terms, should they be relevant, may
be treated in an exactly analogous manner. Moreover, if each of these terms, singly
or in combination, is configured to exhibit attractor dynamics, then it becomes a



Physical Interaction via Dynamic Primitives 289

dynamic primitive in the sense that we have defined [47, 48]. This, in turn, confers
an important robustness to the behavior implemented.

13 Advantages and Consequences of Composability

The composability of dynamic primitives provides one way to ‘work around’ the
curse of dimensionality, allowing the challenge of coordinating many degrees of free-
dom in a multi-objective task to be broken down into a set of much smaller problems.
Each sub-task may be expressed in the form of an equivalent network (Fig. 7) which
combines uni-lateral forward-path dynamic behavior, which outputs a zero-force
trajectory x0 (t), with bi-lateral interactive dynamic behavior, the impedance Z {·}.
Each equivalent network responds to the motion of the inertial object with which
it interacts. Interactions may be at different locations; for example, one equivalent
network may specify a desired behavior of the hand, another a desired behavior of
the elbow, and so forth. In this way, different body parts may be used to ‘manipulate’
the world, even simultaneously; humans do this frequently. Each equivalent network
determines an output force or torque which adds to the net force or torque applied
to the inertial object (e.g. the skeleton) and produces force or motion, depending on
the totality of all interacting equivalent networks and physical objects (e.g. tools).
If conflicting goals are expressed by different equivalent networks, their respec-
tive impedances determine the resolution. Coordination emerges from the combined
action of all equivalent networks. Because of its generality, this approach has been
extended to non-contact tasks such as avoiding obstacles while acquiring targets,
even obstacles which may move [6, 41, 78].

This ‘divide et impera’ approach may have interesting consequences. Using it as
outlined above to manage kinematic redundancy, to ensure control of configuration
the joint-space stiffness matrix K must be positive-definite. Its inverse exists, defining
a joint-space compliance �θ = K−1τ j . For small �θ , the corresponding end-point
compliance is �x ∼= J (θ) K−1 J T (θ) f , where �x = x − xr = x − L (θr ).3The
end-point compliance c j (θ) = J (θ) K−1 J T (θ) provides a ‘default’ interactive
behavior which renders force control difficult. Its inverse4 determines a mini-
mum end-point stiffness. Even with extremely back-drivable actuators (e.g. current-
controlled electric motors) ‘perfect’ force control, corresponding to infinite com-
pliance or zero stiffness, cannot be achieved. Of course, this is also a limitation of
human motor control. Whether this is a disadvantage (a ‘bug’) or an advantage (a
‘feature’) depends on context. As outlined above, in most tool-using tasks, simulta-
neous modulation of stiffness and force is essential.

3This result may be extended to large �θ and �x : for any �x imposed within the workspace, at
equilibrium the linkage assumes a pose that minimizes total potential energy; the analysis is omitted
for brevity.
4When it can be computed; in some configurations and some directions, e.g., arm fully outstretched,
compliance approaches zero and stiffness approaches infinity.
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14 Integrating Tool Use with Posture, Balance
and Locomotion

The composability of dynamic primitives may simplify the control of complex behav-
ior, and using mechanical impedance to manage physical interaction may facilitate
integration of arm motion with posture, balance and locomotion. Indeed, considera-
tion of posture is essential to understand contact tasks and force control. Many tools
are used from a standing position. In that case the dynamics of force production
depends critically on the posture of the feet. Pushing hard by leaning with the feet
together introduces an unstable dynamic zero—force must transiently increase before
it can decrease and vice versa. Spreading the feet apart eliminates this behavior—foot
pose affects hand dynamics [88].

However, the precise nature of dynamic motion primitives underlying posture and
locomotion is unclear. At first blush it might seem that a point attractor is the appro-
priate dynamic primitive for posture and balance, but time-series analysis of center
of pressure variation during standing indicates that multiple limit cycles are present
[17, 25]. Rhythmic walking might seem to require a limit-cycle attractor and, consis-
tent with this model, human walking exhibits entrainment to periodic perturbations,
both on a treadmill and overground [4, 5, 82]. However, rhythmic walking might
alternatively emerge as a consequence of a ‘capture point’ foot-placement strategy:
the swing foot is placed at a location where present momentum would bring the body
to rest over it; observations of human walking appear consistent with this model [24,
87, 110].

Unimpaired human walking is highly dynamic, to the extent that it may be regarded
as ‘controlled falling’; during single-leg stance the system is unstable (like an inverted
pendulum). From that perspective, one important function of the foot—and especially
the ankle—is analogous to the function of an automobile shock-absorber, acting to
‘catch’ the descending body. The essential ‘shock-absorbing’ behavior is charac-
terized by mechanical impedance. While neural feedback of motion and force con-
tributes to net mechanical impedance, the delays due to neural transmission render
feedback modulation of mechanical impedance ineffective during the rapid events
associated with heel-strike. Consequently, we may expect ankle/foot mechanical
impedance to be pre-tuned prior to heel-strike. Observations of multi-variable human
ankle mechanical impedance show that it is reliably increased by simultaneous co-
activation of opposing muscles [65, 66, 69, 71]. Furthermore, observations of the
time-varying ‘trajectory’ of ankle mechanical impedance during treadmill walking
show that it is elevated by co-contracting opposing muscles prior to heel-strike [67,
70]. Remarkably, these measurements also show that ankle mechanical impedance
is energetically passive, even when muscles are active (up to 30% of maximum
voluntary contraction) [68]. The significance of this observation is that, in general,
physical interaction (e.g. due to foot-ground contact) might compromise stability.
Energetic passivity guarantees that physical contact cannot induce instability [15].
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Summarizing, while it is clear that dynamic primitives such as oscillations and
mechanical impedances likely play an important role in posture and locomotion,
many of the details of how this is accomplished remain to be uncovered.

15 A Geometry of Dynamic Primitives?

The paradox of human performance—how do we out-perform modern robots despite
inferior ‘wetware’ and ‘hardware’?—is both a challenge and opportunity. The chal-
lenge is to understand how it is done; the opportunity is to identify bio-inspired
approaches to improve robot performance. This may require substantial re-thinking
of robot control, even down to the fundamentals of the underlying geometry. Model-
based robot control implicitly assumes a Riemannian geometry, yet human haptic
perception appears to be incompatible with Riemannian geometry.

A growing body of evidence suggests that human motor performance is based on
dynamic primitives. Combinations of motion primitives (submovements and oscilla-
tions) account for recovery after neurological injury as well as some counter-intuitive
limitations of human motor control (moving slowly is hard for humans). Controlling
physical interaction may also be based on interactive dynamic primitives (impedance
or admittance). Forward-path dynamics and interactive dynamics may be combined
by re-purposing and extending the classical linear equivalent electric circuit to define
a nonlinear equivalent network.

Interestingly, the most useful form of nonlinear equivalent network requires the
forward-path dynamics to prescribe motions, not forces. That is consistent with unim-
paired human motor behavior and recovery after neural injury. It suggests some form
of underlying geometric structure but prompts an open question: Which geometry is
induced by a composition of motion and interactive dynamic primitives? What are
its properties? Answering those questions might pave the way to achieve superior
robot control and seamless human-robot collaboration.
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Appendix: Choosing Impedance via Stochastic Optimization

Assume a manipulator and its control system are modeled as a mass mm moving
in 1 degree of freedom, retarded by linear damping b and driven by a linear spring
referenced to a ‘zero-force’ point x0. It interacts with an object modeled as mass
mo such that both move with common motion x . State-determined equations for the
coupled system are
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where m = mm + mo, fo is the force exerted by the manipulator on the object, and
we denotes stochastic perturbation forces, modeled as zero-mean Gaussian white
noise of strength S, i.e. E {we(t)} = 0, E {we (t)we (t + τ)} = Sδ (τ ), where E {·}
is the expectation operator and δ (·) denotes the unit impulse function. The objective
function to be minimized is
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where �x = x0 − x and ftol and �xtol are tolerances on interface force and displace-
ment. Due to the stochastic input, the state (x (t) , v (t)) and output fo (t) are random
variables. Assume x0 (t) = constant = 0 and find conditions for a steady-state solu-
tion (i.e. consider the limit as t f inal → ∞). The mean state and output variables
propagate deterministically, i.e. E {x (t)} = E {v (t)} = E { fo (t)} = 0. Define the
input covariance We (t) = E

{(
w2
e (t)

)} = S and the state covariance matrix

� (t) = E

{[
x (t)
v (t)

]
[
x (t) v (t)

]
}

= E

{[
x2(t) x (t) v (t)

x (t) v (t) v2(t)

]}

For notational convenience, omit the explicit time dependence and use overbar nota-

tion � =
[
x2 xv
xv v2

]

. Covariance propagation through a linear time-invariant system

is described by the dynamic equation �̇ = A� + �AT + BSBT where A and B are
system and input weighting matrices.
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Re-write as 3 coupled scalar differential equations

d
dt x

2 = 2xv
d
dt xv = v2 − x2k/m − xvb/m

d
dt v

2 = S/m2 − 2xvk/m − 2v2b/m

The scalar to be minimized is
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Construct the ‘control Hamiltonian’

H = (
k2 + q2

)
x2 + 2kbxv + b2v2

+λ12xv

+λ2

(
v2 − x2k/m − xvb/m

)

+λ3
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)

where λi denote Lagrange multipliers. Minimize with respect to k and b.

∂H

∂k
= 2kx2 + 2bxv − λ2x2/m − λ32xv/m = 0

∂H

∂b
= 2kxv + 2bv2 − λ2xv/m − λ32v2/m = 0

The Lagrange multipliers are defined by ‘co-state’ equations.

∂H

∂x2
= −λ̇1 = k2 + q2 − λ2k/m

∂H

∂xv
= −λ̇2 = 2kb + 2λ1 − λ2b/m − λ32k/m

∂H

∂v2
= −λ̇3 = b2 + λ2 − λ32b/m

Assume steady state exists and set all rates of change to zero.
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2xv = 0
v2 − x2k/m − xvb/m = 0

S/m2 − 2xvk/m − 2v2b/m = 0
k2 + q2 − λ2k/m = 0

2kb + 2λ1 − λ2b/m − λ32k/m = 0
b2 + λ2 − λ32b/m = 0

A little manipulation shows that

xv = 0

v2 = x2k/m

x2 = S/2kb

v2 = S/2bm

The first co-state equation yields

k2 + q2 = λ2k/m

λ2 = km + q2m/k

The optimal stiffness is defined by

2kopt x2 = λ2x2/m

kopt = q = ftol
�xtol

m

mo

Note that this manipulation requires x2 = 0 and hence S = 0. However, kopt is inde-
pendent of noise strength S.

The third co-state equation yields

b2 + λ2 = λ32b/m

λ3 = (
b2 + λ2

)
m/2b = bm

2
+ km

2b
+ q2m2

2kb

The optimal damping is defined by

2bopt v2 = λ32v2/m

bopt = √
2koptm
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This manipulation requires v2 = 0 and hence S = 0. However, bopt is independent
of noise strength S.
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