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Myoelectric Signal Processing: Optimal Estimation
Applied to Electromyography-Part I:

Derivation of the Optimal
Myoprocessor

NEVILLE HOGAN AND ROBERT W. MANN, FELLOW, IEEE

Abstract-This paper (Part I of II) describes the development of a
novel technique for processing the electrical activity of muscle which
uses multiple channels of myoelectric activity. A phenomenological
mathematical model of myoelectric activity is formulated. From this
model, a mathematical statement of the optimal myoelectric signal
processor is derived, and some of its properties are investigated. This
mathematical statement encompasses and places in perspective almost
all single-channel myoprocessor developments to date, as well as speci-
fying the optimal multiple-channel myoprocessor. An experimental
demonstration of the efficacy of this processor is presented in a subse-
quent paper (Part II).

NOMENCLATURE

p (x/y) Probability density function for x given y.
E{ } Expectation.
I I Absolute value of a scalar; determinant of a matrix.
F ( ) Gamma function.
¢ ( ) Characteristic function.
4 ( ) State transition matrix.
H( ) Weighting function, transfer function or frequency

response function in time, Laplace or frequency
domains, respectively.

S ( ) Power spectral density.
R ( ) Autocorrelation function.
p Correlation coefficient.
C or E Covariance matrix.
a, a2 Standard deviation, variance.
A Eigenvalue matrix.
X Eigenvalue.
40 Eigenvector matrix.
I Identity matrix.
M Myoelectric activity.
F Muscle force.
F Muscle force estimate.
u Transformed myoelectric activity.
W Prewhitened myoelectric activity.
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INTRODUCTION

BECAUSE of its potential for providing an easily accessible
quantitative estimate of the active state of muscle, myo-

electric activity has seen wide application in diverse fields, e.g.,
clinical diagnosis, experimental medicine, bioengineering, phys-
ical therapy, psychotherapy, rehabilitation, prostheses/orthoses,
etc. Despite this wide attention, the fidelity achieved using
common myoprocessing techniques is poor. Attempts to pro-
vide a quantitative myoelectric estimate of muscle activity
have been plagued by the presence of an apparent noise com-
ponent of very large amplitude and low frequency which is
superimposed on the desired signal [1]. Over the past decade,
many attempts have been made to improve myoprocessor per-
formance, but most of these improvements have evolved
serendipitously, without any comprehensive theoretical justifi-
cation. This is primarily because when viewed from the physi-
ological standpoint, the problem appears to be intractably
complex, and when viewed from the signal-processing stand-
point, the problem is seen to be fundamentally nonlinear.
Part I of this paper reports on a project whose outcome was:
1) the introduction of a novel myoprocessing technique, and
2) the mathematical derivation of the optimal myoprocessor.
Part II reports on the experimental demonstration of the per-
formance of this myoprocessor, which is almost an order of
magnitude better than the common myoprocessor.
This project was part of our ongoing effort to develop a

myoelectrically controlled, externally powered prosthesis-one
of the most demanding applications of myoelectric activity.
Although myoelectrically controlled, externally powered pros-
theses are currently in use, these devices are of limited capa-
bility, and the opinion has grown that there are fundamental
problems associated with myoelectric control. It has been
commonly observed that the operation of myoelectrically con-
trolled prostheses requires an inordinately high degree of con-
centration and is heavily dependent upon direct feedback of
prosthesis position, particularly via vision [2] -[6]. This is
manifestly unacceptable, and the primary focus of recent re-
search on externally powered assistive devices has been the
provision of substitute sensory feedback paths (i.e., cutaneous
or neural stimulation) to replace the lost proprioceptive senses
[61 -[11]. The underlying presumption is that difficulties
with myoelectric control are due to sensory lacunae, and that
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in the absence of position and movement sensors, such as the
skin receptors or joint afferents, and the subsequent integra-
tion of this sensory information in the brain, the operator is
largely ignorant of what his muscles are doing and requires ex-
ternal sensory feedback to inform him of his actual move-
ments. It is important to note that this argument is based on
the predominant neurophysiological opinion of a decade ago
(contemporaneous with the research presaging current pros-
theses) that proprioceptive feedback was all-important in the
execution of normal movements [12] - [14]. Neurophysiologi-
cal research has recently provided new insights, but the phi-
losophy underlying research in myoelectrically controlled de-
vices has yet to reflect thisnew knowledge. Strong experimental
evidence now exists that the major component of the move-
ment control which was hitherto attributed to sensory feed-
back loops can be accomplished in the absence ofany feedback
[15] -[19]. This new neurophysiological knowledge means
that provision in a myoelectrically controlled device of a high-
quality, surrogate sensory feedback pathway alone will not be
sufficient to guarantee successful control. Instead, the most
important requirement is a forward path which will ensure
accurate and timely communication to the machine of the
motor intent of the operator. Given a forward path of suffi-
cient quality, the performance of at least the ballistic portion
of movements may be achieved without need of external feed-
back. Note that we do not suggest that the amputee will be
able to dispense with position feedback entirely, but that the
need for observation during movement will be reduced. On
the other hand, inaccuracies in the forward path will prohibit
fine control, even in the presence of external feedback. In ef-
fect, the fidelity of the forward path of the system determines
the limits of the obtainable performance. For these reasons,
we are of the opinion that a major impediment to successful
myoelectric control is the low fidelity achieved using common
myoprocessors. There is a clear need for improvement, and
this provided the motivation for the work reported in this
paper.

MULTICHANNEL MYOPROCESSING: A NEw APPROACH
The basis of the new processing technique and the justifica-

tion for the mathematical analysis are providedby considering
the physiology and electrophysiology of muscle. The mechani-
cal output of the muscle is a combination of the outputs of all
active motor units in the muscle. Each of these, in turn, is a
combination of the outputs of the individual contractile fibers
which, in turn, are a combination of the outputs of the in-
dividual sacromeres which, in turn, are a combination of indi-
vidual actin/myosin interactions. Similarly, the electrical
activity of the muscle is a combination of individual electrical
events in the muscle. In both cases, the macroscopic activity
of the muscle is a weighted sum across both space and time of
a large number of individual events, but the weighting in the
electrical case is radically different from the mechanical case.
This is due to the electrode and tissue attenuation which limits
the pickup region of the electrodes. In effect, the electrodes
"look at" only a small sample of the total population of active
muscle fibers. As a result, a spatiotemporal sampling artifact
ensues which is manifested as large-amplitude, low-frequency

"noise" contaminating the myoprocessor output. Elimination
of a sampling artifact requires an increased sample size. To
accomplish this without compromising the selectivity of the
detector, the new technique of combining multiple channels of
myoelectric activity into a single myoprocessor output was
proposed [1].
To apply this new technique, two questions have to be

answered: what is the best way to process the activity of each
individual electrode, and what is the best way to combine the
individual electrode activities?

FUNCTIONAL MODELING OF MYOELECTRIC ACTIVITY

To answer these questions, a model of myoelectric activity
was developed. Because the relation between the contraction
of a muscle and its myoelectric activity is extremely complex,
a detailed, structural description of even the firing of a single
muscle is inordinately involved. As our objective was to de-
sign a practical myoprocessor, the approach taken was phe-
nomenological. The model developed provides a functional
description of the observed relation between muscle contrac-
tion and myoelectric activity, but does not describe the under-
lying structural processes. This point is important when in-
terpreting our mathematical results.
Shown schematically in Fig. 1, the model describes myoelec-

tric activity as a random process whose instantaneous ampli-
tude distribution for a fixed level of muscle activity is Gaussian
with zero mean:

p {M(t)} = 1 exp [ 1 *M(t)2].VXu r F)2j'
E {M(t)} = 0.

(1)

As myoelectric activity is a sum of conditionally indepen-
dent events, the Law of Large Numbers justifies this assump-
tion, and experiments verify it (at least for surface myoelectric
activity) [20] -[24]. The assumption of zero mean is justified
on the basis of experimental observations.
The other parameter of the amplitude distribution is its

variance, and this is assumed to be modulated multiplicatively
by a static or memoryless function of muscle force which is, in
general, nonlinear:

a2 =oa [F(t)] 2. (2)

The time dependence between successive values of myoelec-
tric activity is completely characterized by the autocorrelation
function or, equivalently, the power spectral density. In gen-
eral, myoelectric activity is a nonstationary random process,
as muscle force may vary, but as the frequency components of
muscle force are almost an order of magnitude lower than
those of myoelectric activity, the process may be described as
"secularly varying," that is, stationary over the time available
for processing.
Because we have assumed multiplicative modulation, the

shape of the power spectral density of myoelectric activity will
be invariant, independent of force. This assumption is justified
by experimental data [25], [26]. We further assume the
power-spectral density to be a rational function of frequency.
This assumption is made primarily for mathematical con-
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Gaussian, White representing Tissue/
Noise Process Electrode effects

Amplitude Distribution-
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Myoelectric Power Spectral Density

F(t) }o(F) Activity

SM(f) - jH(M)2o(F)2
Muscle Force Static Relotion

between Force and
Myoelectric Signal Amplitude

Fig. 1. A functional mathematical model representing myoelectric
activity as a band-limited, zero-nean, Gauss-Markov process [N(t)]
which is amplitude-modulated by a static function of muscle force.

venience, but it is also a reasonable description of experimental
observations. (See Part II of this paper.) Thus (see Appendix
II),

SM(f)= Q - IH (f)12 * a(F)2 (3)

where Q = constant and H(f) 12 = ratio of polynomials in f2.
This set of assumptions permits myoelectric activity to be

modeled as a zero-mean, Gaussian white noise process passed
through a linear constant-coefficient filter (representing a com-

bination of the frequency content of subcutaneous myoelec-
tric activity and the filtering effect of transmission through
tissue and detection by electrodes) which is subsequently
multiplied by a static, nonlinear function of muscle force. A
physical situation corresponding to this model is that of a

muscle contracting under isometric, nonfatiguing conditions.
In this case, the parameters describing the myoelectric activity
are a function only of the muscle force. This situation obtains
when the relevant, residual, but now dysfunctional muscles in
an amputee's stump are used to command the movements of
an externally powered prosthesis.

OPrIMIZATION PROCEDURE
In myoelectric control, the basic function of the myoproces-

sor is to permit the human operator to communicate his intent
to the machine. We assume that the operator's intent with re-

spect to the machine can be determined unequivocally from an

observation of the appropriate set of muscle forces. Funda-
mentally, this assumption is based on Newton's laws which
guarantee that every movement is causally determined by a

force, but more specifically, it has been shown that given the
appropriate set of muscle forces and a knowledge of the kine-
matic state of the prosthesis and the relevant musculoskeletal
anatomy, the required prosthesis actuator torques can be de-
termined [27], [28].
The task now is to measure muscle force using myoelectric

activity. The model of Fig. 1 describes myoelectric activity as

a Gauss-Markov process and suggests the use of the well-
developed theory of linear Kalman filters. However, the fre-
quency components of the desired signal, muscle force, differ
from those of the available information, myoelectric activity,
and, in addition, the "signal" and "noise" are multiplied, not
added. Thus, the problem is fundamentally nonlinear, and

Kalman-filter theory cannot be applied, even as an approxima-
tion. The approach taken was to treat the problem as that of
estimating a statistical parameter of a random process rather
than that of extracting a signal from noise. Using a combina-
tion of state-space methods and statistical decision theory, the
optimum myoprocessor was defined as the maximum likeli-
hood estimator of muscle force. Given some very general and
unrestrictive conditions, the classical maximum likelihood
estimator is known to be consistent and efficient, although
not necessarily unbiased.
The use of the maximum likelihood estimator and state-

space methods make the optimization procedure particularly
simple. Also, in the interest of simplicity, a discrete formula-
tion was used. From the probability density function for an
individual sample of myoelectric activity M(t) and the auto-
correlation function or power spectral density relating suc-
cessive samples of myoelectric activity, we can derive the
probability density function (or likelihood function) for a
finite set of samples of myoelectric activity, given a value of
muscle force:

p(M/F) = p(Ml * MN/F)
where M = [M(tl), . * * , M(tN)1 T is the sequence of values of
myoelectric activity and F is the muscle force.
The maximum likelihood estimator of muscle force F, given

a set of observed values of myoelectric activity MO, is de-
fined by

d p(MIF) ^ =

M=Mo

where F is the optimal estimator of muscle force and Mo are
the observed values of myoelectric activity.

CASE I: SINGLE CHANNEL, UNCORRELATED SAMPLES
To illustrate the properties of the resulting optimum myo-

processor, we will first suppose myoelectric activity to be
sampled at equally spaced intervals At seconds apart where
At is such that successive samples are uncorrelated, i.e.,

RM(T)0=; r>At.

Because the samples are taken from a Gaussian process, un-
correlatedness implies independence. Because only a finite
time T is available in which to produce the estimate of muscle
force F, we specify that there are only a finite number N of
samples where N = T/At. Thus, we have N independent sam-
ples of myoelectric activity, each distributed according to

p(M1/F)=exp l -N.
u%27ra(F) 2U()

Hence, the likelihood of this sequence occurring is given by
P(

N
p(M/F) = H p(Mi/F).

i=l

The best estimate of force on the base of this set of samples
is that for which this likelihood is a maximum. The resulting
expression defining the best estimator F is
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F arI {[ n Ml (S)

In this expression, au1 denotes the inverse functional relation-
ship between muscle force F and standard deviation a. Details
of this derivation are given in Appendix I.

What this derivation has yielded is a reiteration of the well-

known fact that a Gaussian process is completely described by
its mean and variance. In this case, the mean is zero, by as-

sumption; thus, the variance carries all the information. The
optimal estimate of force is, therefore, obtained by first
estimating the variance by squaring and averaging and then
using the known relation between force and variance to obtain
the force estimate. An operational block diagram of the pro-

cess is shown in Fig. 2.

PROPERTIES OF THE OPTIMAL MYOPROCESSOR
As with all optimization procedures, the nature of the results

depends heavily upon the precise meaning of "optimal" or
"best." To provide some insight into the properties of the
maximum likelihood estimate, we will examine some of the
characteristics of the optimal processor. First, we need a pre-
cise forn for the relation a = a(F). This can be obtained from
data relating muscle force to mean rectified myoelectric ac-
tivity because (see Appendix I)

a/2*E {IMII.

This relation has been found to be both linear [291-[31] and
nonlinear [32]-[36], with the consensus favoring a nonlinear
relationship. We will use the form

a=k * Fa. (6)
This relation fits the data of Vredenbregt and Rau [35] with a
correlation coefficient of 0.98 (see Appendix I). Using (6) in
(5), we obtain

={ [N EZM

It is shown in Appendix I that the force estimate thus de-
fined is distributed according to an inverse Gamma-n distribu-

A

tion [371. The mean value ofF is given by

A F (N/2 + 1/2a) r2]1/2a
E IF} = F.

Thus, except for the case when a = 0.5, F is a biased estimator
of muscle force. N is the number of degrees of freedom in the
estimate of the total signal variance and is given byN = 2BsT
where Bs is the statistical bandwidth of the signal and T is the
averaging time. Typical values for the parameters are a = 1.74,
Bs = 100, and T = 0.25 [38] . These yield an expected value
for the estimate of

E {F} = 0.996F.

Thus, the effect of the bias is small-less than 0.4 percent-

and is easily corrected. This bias is characteristic of the maxi-
mum likelihood method. Application of least-squares methods
would probably correct this minor fault.
Under constant force conditions, we can consider the mean

value of F as the desired signal and the variations about this
mean as "noise." We can define the signal-to-noise ratio as

{F}2 ]1/2

E {(F- E {F})2}

which can be shown to be (see Appendix I)

SNR = T[(N/2 +/a)
1

N/2) - 1 = constant.

Thus, the variability of the estimate increases with the mean
value of the estimate. The variability of the actual force also
increases with the mean level of muscle force; thus, the proper-
ties of the optimal estimator derived above are quite
reasonable.

CASE II: SINGLE CHANNEL, DEPENDENT SAMPLES
Case I above assumes samples spaced far enough apart that

successive samples were independent of one another. At closer
spacings, these samples become interdependent. This de-
pendence is given by the autocorrelation function of the pro-
cess which is a property of the linear constant coefficient filter
in the model of Fig. 1. For simplicity, we assumed this filter
to be a first-order, low-pass filter (generalization to a higher
order filter is straightforward although tedious). This and the
earlier modeling assumptions permit us to assume the station-
ary first-order Markov property:

P(M,Mi-1, Mi-2,'* **,M1,F) =p(Mi/Mi l, F) (7)
where the sequence Ml * MN is ordered such thatMN is the
most recent sample, i.e.,

Mi =M(ti); tl <* ti < ... tN-

The Markov property means that given an initial likelihood
function, subsequent likelihood functions can be determined
from a knowledge of the transition likelihood function, the
right-hand side of (7). To assume the Markov property is to
assume that the process is state determined in the probabilistic
sense. The transition likelihood function p (Mi/M,l, F) is de-
rived from the autocorrelation function RM(T) via the state
transition matrix 4(r) of the linear, time-invariant, shaping
filter, as shown in Appendix II.
Given the transition likelihood function, we use Bayes' rule

and the Markov property to express the likelihood function
for the sequence M1 ... MN as

p(M/F) = [l[IP(MilMi-j,F)] *p(M11F).

From this point, the derivation proceeds much as in the
previous case and is presented in Appendix II. Because we
have accounted for the interdependence of successive samples,
there is no restriction on the sample spacing. The continuous-
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[M(t)|_E F(t)
Sampler Squarer Averager

Relineariser
Variance Estimator

Fig. 2. Block diagram of the discrete-time version of the optimal single-
channel estimator of muscle force. Samples are assumed uncorrelated.

[M(t)3 -H( tT)

Squarer Running
Avera ger -----

Prewhitening Relineariser
Filter Variance Estimator

Fig. 3. Block diagram of the continuous-time version of the optimal
single-channel estimator of muscle force.

time version of the optimum myoprocessor in this case will be
as shown in Fig. 3. The only addition to the processor of Case I
is the inclusion of a complementary or "prewhitening" filter
H*(f). In theory, the prewhitening filter acts to remove the
correlation between successive samples of myoelectric activity
which had been introduced by the shaping filter H(f).
The optimal processor of Fig. 3 must be interpreted care-

fully. The fact that the mathematics indicate a complementary
filter to remove the correlation introduced by the shaping
filter is a direct consequence of our initial assumption of a
white noise (or purely random) process. The complementary
filter is an attempt to restore the spectrum of the signal to its
initial "white" condition-hence, the name "prewhitening"
filter. Clearly, in the real physical situation, we do not have a
white process-a white process is merely a convenient mathe-
matical fiction. The relationship between the prewhitening
flter H*(f) and the shaping filter H(f) for the continuous
case is shown in Fig. 4. This clearly indicates that the pre-
whitening filter is unrealizable as it requires infinite gain at
some frequencies. However, as indicated in Fig. 4, an approxi-
mation to the prewhitening filter is realizable.
Putting aside the considerations of realizability, the blind

application of this technique of prewhitening is unwise. At
high frequencies, the signal amplitude is not simply reduced by
the filtering effects of the skin-there is no signal at high fre-
quencies. Any attempts to "restore" the signal at these fre-
quencies will merely serve to amplify background noise-a
feature of the real world which was not included in the model.
Nonetheless, the technique can be applied over those fre-
quency ranges for which the signal exists and is not dominated
by background noise. Certainly no frequency range containing
useful signal information should be attenuated.

PREWHITENING VIA ELECTRODE CONFIGURATION
An interesting approach to prewhitening is to modify the

filtering function due to the muscle tissue, skin, and elec-
trodes [40] . From simple analytical considerations, it can be
shown that the differential electrode configuration which is
used to eliminate common mode interference acts to filter the
myoelectric activity through a "frequency comb" as sketched
in Fig. 5. The effect is much like a diffraction effect-the dif-

a

001

\
oooo. .1 - - - -

i Xq
01 10 100 IK 10

Frequency, Hz

100X
oo - l

0.1 10 100 IK 10

Frequency, Hz

IOK --

100 - -- -

= I

o - I - -o lo ,0*01 - - - - -

0.1 10 100 1Kx 10

(a)

K

(b)

K

(c)

K

Frequency, Hz

Fig. 4. Diagram of the relationship between the shaping filter H(f)
shown in (a) and the prewhitening or complementary filter H*(f)
shown in (b). Because H(f) goes to zero at high and low frequencies,
the relation H(f) - H*(f) = 1 requires H*(f) to become infinite at
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Fig. 5. Diagram of the filtering effects of the spacing between the two
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action potential along a muscle fiber and the spacing of the
differential electrodes. Typical values for these parameters
place the first dip at a frequency of 100 Hz-right in the
middle of the bandwidth of surface myoelectric activity. By
reducing the electrode spacing, this dip can be moved to a
higher frequency, thus increasing the effective bandwidth of
the myoelectric activity or, alternatively, acting to make the
frequency spectrum of myoelectric activity look more white.
The result will be an improvement in myoprocessor
performance.

CASE III: MULTIPLE CHANNELS, UNCORRELATED SAMPLES
The preceding analysis yielded the optimal myoprocessor for

the single-channel case. The same approach is readily adapted
to the multiple-channel case (see Appendix III). A multi-
dimensional Gaussian amplitude distribution is assumed whose
parameters are modulated by a static, nonlinear function of
muscle force. As before, the mean is assumed zero; thus, in
this case, all of the information is carried in the covariance
matrix C. This covariance matrix can be written as

C=ST*R .S=

p(M/F) = constant = (2r).-m/2 C(F) 1-2
exp [- . MT. C1 MI.

Taking the natural logarithm yields

MT. C' -M = 2 loge [constant (27r)1m/2
-I C(F) 1-1/2 ] = constant.

This equation defines a hyperquadric surface which, in the
two-dimensional case, is an ellipse. The effect of the trans-
formation is simply to rotate the coordinate axes; that is,
linear combinations of the original myoelectric activities are
formed whose coordinates lie along the major and minor axes
of the ellipse; see Fig. 6. Because the major axis coincides
with one of the new coordinate axes, the two combinations
are uncorrelated.
The problem is now to estimate muscle force on the basis of

m uncorrelated and independent channels of transformed myo-
electric activity u. Knowing that 41(F) is the variance of uj,
we make an assumption of amplitude modulation just as in the

1 P12 ... PIr oU

P21 1

P? 01
PM , L.-

2

agm_

where S is a matrix of the standard deviations of individual
channels and R is a matrix of the correlations between pairs of
channels. In general, all Ui and Pij are functions of F. How-
ever, considerable algebraic simplification is obtained by per-
forming an orthonormal transformation on the vector of
myoelectric activities M(t):

u(t) = T * M(t).

4) is a matrix of unit eigenvectors of C(F) and is defined by

C(F) * D =lb - A(F); (T.* = I

where I is the identity matrix and A(F) is the diagonal matrix
of eigenvalues:

X,(F)

A(F)=
)tm (F)j

The advantage of this transformation is seen in the covariance

matrix of the vector of transformed myoelectric activities u:

E {u UT} =4TE {M.MT} )= T. C(F) =A(F).

Thus, the covariance matrix is a diagonal matrix, and the in-
dividual transformed myoelectric activities uJ are uncorrelated.
The transformation is linear; therefore, the vector of trans-
formed myoelectric activities u is Gaussian distributed. Con-
sequently, the individual transformed myoelectric activities
are independent.
A geometric interpretation will clarify the effect of this

transformation. Contours of constant likelihood are de-
fined by

previous cases. We assume that the functions relating each
eigenvalue to force are similar in form -and differ only by a
constant, i.e.,

Xi,(F) = Xi Ua(F)2 allj

or

A(F) =A * a(F)2

where a (F) is a static nonlinear function of force. This as-
sumption says that the shape of the hyperquadric surface of
constant likelihood is independent of force-only its size or
amplitude depends on force. In terms of the original covari-
ance matrix C(F), this assumption is equivalent to assuming a
constant correlation matrix R, and assuming that the functions
relating the variances of the original myoelectric activities to
force are similar, differing only by a constant, i.e.,

j(F)2 =k1U,(F)2 for alj.
Although different researchers investigating different muscles

and electrode locations have found different forms for these
functions, this latter assumption seems quite reasonable. The
former assumption of a constant correlation matrix is some-
what more dubious. It is possible, for example, that as force
increases, a number of active motor units within range of the
electrodes are recruited in a pattern such that the correlation
matrix changes with force; however, this is likely to be a weak
effect (see Part II of this paper). In any case, these assump-
tions afford considerable mathematical simplification, so with
the above comments in mind, we proceed without further
apology. Note that the assumption of constant correlation is
the spatial analogy of the previous assumption that the shape
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(a) (b)
Fig. 6. (a), (b) Geometric interpretation of the orthonormal transfor-

mation showing its effect to be a rotation of the coordinate axes.

of the frequency spectrum is constant. This analogy will
prove useful.
Now, as in case I, we assume a sequence of N serially un-

correlated samples of the orthonormally transformed myoelec-
tric activity us * UN where

ugi =u (ti) = [u1 (t,) ... u1(ti) * Um(ti)]

From here, the derivation proceeds as in the previous cases

(see Appendix III) and yields as the optimal myoprocessor

F=- E-[1N
.

E l E J} (8)

To get a clearer picture of what
fime the transformation:

W = A-A/2 - U =A-I2 . ,ZT.M

where

A-1/2 =

Thus,

1=2E = T -1
j=l jX

I 0

0 1

v/5zm-

this equation means, we de-

.U=WT.W= W?
j=i

Substituting into (8), the expression
processor becomes

for the optimal myo-

FA l N[f. E
1/2

}

Thus, the required process is: perform the transformation from
M to W, then square each channel, and average across space
(index j) and across time (index i). Finally, use the nonlinear

relation between force and variance to obtain the force esti-
mate. An operational block diagram is shown in Fig. 7.
The covariance of W is

E {W WT} = A-1/2 -E{Eu.uT} * A-12 = A-1/2

*A(F) -A-1/2 =I a(F)2

that is, each of the Wi has the same variance a2 (F). For this
reason, the transformation defined by (9) is known as a pre-
whitening transformation. This is because the orthogonal
components of M are transformed into components of W
which are uncorrelated and of equal variance. The transforma-
tion is illustrated in Fig. 8. Spatial prewhitening is directly
analogous to frequency domain prewhitening. A frequency
spectrum can be regarded as being composed of a number of
orthogonal harmonic components, each of which carries a por-
tion of the total variance of the signal. Frequency domain
prewhitening acts to equalize the contribution of each com-
ponent to the total variance. In direct analogy, spatial pre-
whitening acts to equalize the contribution of each channel
of myoelectric activity to the total variance.
Pursuing the analogy between spatial prewhitening and fre-

quency domain prewhitening, it can be shown that similar
caveats apply. If one attempts to combine two channels of
myoelectric activity which are perfectly correlated, the pre-
whitening transformation is degenerate and would require in-
finite gains. The reason for this failure of the prewhitening is
because if the two channels of myoelectric activity are per-
fectly correlated, the second channel adds no new information.
Now, suppose that instead of a correlation of one, we have a
correlation of slightly less than one. In this case, the second
channel does add some new information, and we do not have
a degenerate case as above. However, a very large gain is neces-
sary. Although it was not included in the model, any real
situation will have additive noise, and the effect of prewhiten-
ing will be to amplify this noise. Thus, although the second
channel of myoelectric activity may add a small amount of
new information, it is not worthwhile to try to use it. As in
the frequency domain case, the message is clear: proceed
with caution.

CASE IV: MULTIPLE CHANNELS, DEPENDENT SAMPLES
The next logical step would be to extend the analysis to

account for the time dependence between samples in the multi-
channel case. Brief reflection on this problem reveals that, in
this case, we would have to deal with an m-input, m-output
transfer function representing the effects of the transmission
of myoelectric activity to the skin electrode interface. The
dimensionality of this problem is extremely cumbersome, and
the benefits of the pursuit are not enticing. Inductive reason-
ing indicates that the analysis would most likely require the
optimal myoprocessor to prewbiten in the spatial domain, pre-
whiten in the frequency domain, and then proceed as before.
At this stage, we felt it more important to seek experimental
verification of the efficacy of the optimal myoprocessor than
to pursue the analysis.

COMPARISON OF ANALYSIS WITH PREVIOUSLY
PUBLISHED RESULTS

The optimal single-channel myoprocessor derived above en-
compasses and places in perspective almost all of the improve-
ments of myoprocessing reported in recent literature.
The averaging circuit has been shown to be superior to the

common first-order, low-pass filter by Kreifeldt [411 and Gott-
lieb and Agarwal [42]. Note that under the stated assump-
tions of our analysis, not only is it superior, it is also the best.
Variations of the nonlinear demodulation with and without
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M I( 1 )I

M2(t)

Mmn(t )

A

F(t)

I I LI I I i. is an eigenvector of_______________ - the covarionce matrix.

PREWHITENING DEMODULATOR x is the corresponding
TRANSFORMATION e igenva I ue.

Fig. 7. Block diagram of the optimal multichannel estimator of muscle force. Samples are assumed uncorrelated.

IUt

U2

_ X2

WI

1.0

W2

1. 0

Contours of WI Ul w2 = UU2 //
Constant Likelihood

Fig. 8. Geometric interpretation of the effect of the prewhitening
transformation showing the rescaling of the orthogonal components
to equal variance.

some form of subsequent relinearization were examined by
Kreifeldt and Yao [43]. Under the assumption made by
Kreifeldt and Yao that mean rectified myoelectric activity
varies linearly with force, our analysis predicts that of the
processors with relinearization, the square law processor will
perform best. This is borne out by their experimental data
(except at the 5 percent contraction level). At the 25 percent
contraction level, the superiority is marked. It is difficult to
put the remainder of their results in perspective because they
violate the condition E {F} = F.
The nonlinear transfer characteristic of a root-law demodu-

lator such as Kreifeldt and Yao recommend has been criticized
by Kadefors [44] on the grounds that excessive nonlinearity
"reduces the number of separable signal levels." In fact, a non-

linear transfer characteristic is necessary in order to meet the
requirements that E {F} = F. The overall transfer character-
istic of the common myoprocessor using a simple rectifier is
"linear" in that the output varies linearly with the mean ampli-

tude of myoelectric activity; however, because of the non-

linear relation between muscle force and myoelectric activity,
a nonlinear transfer characteristic is required in order for the
processor output to vary linearly with muscle force.

Finally, both the idea of electronic prewhitening and the
idea of prewhitening by reducing electrode spacing were sug-
gested by Kaiser et al. [20]. Detailed analysis of the situation
was performed by Lindstrom [45]. Experimental work was

performed by Monster [3] which confirmed bandwidth in-
crease. The effect of reduced electrode spacing on the signal-
to-noise ratio of the myoprocessor output is demonstrated ex-

perimentally in Part II of this paper.

As can be seen from the above, the analysis agrees well with
data reported in the literature. The particular value of the
analysis lies not so much in the fact that the reported improve-
ments are derived, but in that it serves to put them in perspec-
tive and provides a coherent basis for comparison and evalua-
tion of each improvement. For example, on the one hand, it
elucidates why prewhitening must be approached with caution,
and on the other hand, it shows how some of the objections to
relinearization can be removed.

DISCuSSION
The mathematical techniques developed to solve the myo-

processing problem-a combination of state-space methods and
statistical decision theory-are applicable to a broad class of
nonlinear estimation problems, particularly those in which the
contaminating noise is multiplicative and the desired variable
includes zero in its range. This situation is ill-represented in
the literature, with the most attention being focused on the
problem of estimation in the presence of additive noise. This
emphasis on linear filtering of additive noise has led to the
often-inappropriate application of textbook results. As
pointed out earlier, the myoelectric signal-processing problem
is fundamentally nonlinear, and the use of linear techniques
is, at best, a poor approximation. Because ofthe techniques we
used, we were able to avoid the assumption made by Parker
et al. [24] that the myoelectric signal takes on a series of dis-
crete amplitudes, and instead solve for a fully proportional
myoprocessor.
The techniques presented here will have wide application in

processing other bioelectric signals. For example, recent
research has shown the feasibility of detecting the activity of a
nerve bundle directly using a chronically implanted nerve elec-
trode [46]. The signal from a nerve bundle is a spatiotemporal
combination of the activities of a large number of individual
nerve fibers; hence, it will probably be best described as a sta-
tistical process, and the methods presented in this paper can be
used to decode it.
Although we do not take the analysis any further in this

paper, our method shows considerable promise, and we recom-
mend that it be pursued in future work. We derived the opti-
mal mnyoelectric estimate of muscle force from a simple func-
tional model of myoelectric activity which assumed a Gaussian
amplitude distribution. This is adequate for surface myoelec-
tric activity, but for some applications, e.g., intramuscular
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electrodes, a more detailed structural model such as that devel-
oped by De Luca [47] will be necessary. For surface elec-
trodes, De Luca's model reduces to the model we used.
We assumed that surface myoelectric activity depends solely

on muscle force. In fact, myoelectric activity is related to
muscle force F, muscle length L, velocity of shortening V, and
a host of other physiological variables which reflect such things
as state of fatigue, temperature, etc. Denoting all of these
latter variables by 0, we can write this in noncausal form as

g(F,M,L, V,k) 0.

In causal form, this equation should be written

F=g(M/L, V,4O),
that is, the kinematic variables L and V and the other physio-
logical variables k act as parameters of the relation between
the output force and the input activity. This is borne out by
the experiments of Vredenbregt and Rau [35]. For most pur-
poses, the physiological variables 0 may be considered constant
(i.e., no fatigue) and the kinematic variables may be assumed
constant (as in the case of an amputee's stump muscles) or
measured directly by means of goniometers. Thus, with minor
modifications, the optimal myoprocessor derived above can
still be applied.
We assumed that the relation between muscle force and

myoelectric activity is static or memoryless. This is not the
case. In addition to a pure time delay between myoelectric
activity and muscle force [38], [25], the amplitude of myo-
electric activity appears to depend on the rate of change of
muscle force as well as on its instantaneous value [381, [48].
If this behavior can be incorporated into our mathematical
analysis, we anticipate a significant improvement in myopro-
cessor performance, particularly during the dynamic phase of
muscle activity. Finally, our method should be modified to
include in the model such effects as additive noise. An ap-
proach to both of the above would be to use Bayesian meth-
ods to allow the current likelihood function for a sequence of
samples to reflect prior information from past values of muscle
force. There is some difficulty in specifying the form of the
prior distribution, but this should not be insurmountable.

APPENDIX I
OPTIMAL SINGLE-CHANNEL MYOPROCESSOR,

UNCORRELATED SAMPLES
The maximum likelihood estimator of muscle force is

defined by

d
pF(MIF)\ 0. (A.1)dF F=F

M=M0

The location of the extremum is unaffected by any monotonic
transformation; hence, (A.1) is equivalent to

d
dF [lnp(M/F)]J = (A.2)

M=M0

Individual samples of myoelectric activity are Gaussian
distributed:

(A.3)p(Mi/F) = /(F) exp -

The likelihood function for a finite set ofN serially uncorre-
lated (and by the Gaussian assumption, independent) samples
of myoelectric activity is

N
p(M/F) =p(MI * MN/F) = H p(Mi/F).

i=l

Applying (A.2) and (A.3),

N N
ln P(M/F) = ln H P(Mi/F) = ln P(Mi/F)

i=l i=l

=-Nln2--Nlna(F)-1
N*U(F)-2 * £M2
i=l

dF dFdF[lnp(M/F)] = U(F)- 2 [2(F)]

*[(F) £ i -N]=0.

Because a(F) is a monotonic function of force,

g(f)~l dF [u(F)] F #0

d
dF [lnp(M/F)] =F

M=Mo

N
=0 a(F)2 £ M2 -N=0

i=l

F -1{[I ]1/2}

(A.4)

The properties of this estimator are demonstrated by deriving
expressions for its mean value E{F} and its signal-to-noise
ratio, defined by

SNR r E{F}2 1/2 (A.5)
LE{(F- E{F})2}J

We need the likelihood function for F. With the change of
variables Y = M2, (A.3) becomes

p(Y/F) = constant . y-1/2 - exp [- 2. u(F)21

This is a Gamma density function:

['(Y/Y,r(a)Y *e , Y>O; a, O>0
PY(YkxC3)=

Y<O

(A.6)
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with a = 24B = 1/2a(F)2.
The likelihood function for the variable

N N
Z= Yi=EM?

i=l i=l

is found by convolving p(Y/F) with itself N times, which is
most easily performed via the characteristic function t(t),
the inverse Fourier transform of the likelihood function:

ty(t) E{eitY} =ft0 eitYp(Y/F) dY.

Using (A.6) yields

ty(t) [ _it3

Under the inverse Fourier transform, convolution becomes
multiplication; thus,

Hence, Z is Gamma distributed (A.6) with

N1
az=Na=-; Az=P=2 2((F)2

From (A.4),

F -1 {1N]1/2} (A.7)

To proceed, we need an explicit form for the relation a = a(F)
and its inverse. This is obtained from the data of Vredenbregt
and Rau [35] relating muscle force and mean rectified myo-
electric activity E{ IMI} if we note that

E{IMl} = J MI -p(M) dM

E{F} = [kZ] * pZ/F) dZ

F(N/2 + 1/2a) [2 1/2a
r(N/2) LNJ

Thus, the mean value of the estimate F is proportional to
actual muscle force F.

{} Kz 2/2a
E{f2 } = | 2N p(ZIF) dZ

r(N/2 + I/a) r2lla
I'(N/2) JN

E{(F - E{F})2 = E{F2} -E

[r(N/2 + 1/a) I(N/2) 1].
[ (N/2 + 1/2a)2

(A.8)

Using (A.8) in (A.5),

=r(N/2 + I/a) * I(N/2)SRa. F(N/2 + 1/2a)2
-1/2

1] = constant.

Thus, the standard deviation about the mean is proportional
to the mean.

APPENDIX II
OPTIMAL SINGLE-CHANNEL MYOPROCESSOR,

DEPENDENT SAMPLES

The differential equation describing the linear time-invariant
filter of Fig. 1 is written in state-space notation as

d x(t) = A * x(t) + b - w(t); N(t) = ctT x(t). (A.9)

Solution of this equation yields the matrix superposition
integral:

=2. MfM 1 exp [- 2*k ].* dM-

Substitute V = 1 * (M2/u2); E {Ml = a * r e-u dv=
auV7f. Thus, E{ Ml} is proportional to a. For a = a(F), we
assumed a relation of the form a = k - Fa; transform this to a

linear equation by taking the logarithm

ln a = In k + a In F

and fit Vredenbregt and Rau's data to this equation using
least-squares linear regression techniques. The value obtained
for a was 1.74, with a correlation coefficient of 0.98, indicat-
ing an adequate fit. k is an arbitrary scaling constant.
From (A.7), we now have

^ [Z1f2a
F= N

t
x(t) = D(t - to) * x(to) + J D(t - -r) - b - w(r) - dr (A.10)

or

ft
=H(t - T) * w(^r) dSr. (A.I 1)

41(t - r) = exp [A(t - r)] is the state transition matrix.
H(t - -r) = cT * (t - r) * b is the system weighting function;

its Laplace transform is the system transfer function H(s):

H(s) *(sI -A)- * b.H() w(s)
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Substituting s = i2,rf yields the frequency response function
H(f):

H(f) = CT - (i2fffI - A)-' - b.

This is a ratio of complex-valued polynomials in f.
The autocorrelation function ofN(t) is found as follows:

RN(tl, t2) - E{N(tj) * N(t2)T}. (A.12)

Using (A.9),

RN(tl, t2) = cT - E{x(tl)x(t2)T} - c= CT * R.(tl, t2) - c.

Assume that t1 > t2:

E{x(tl) . x(t2)Tj} = (t, - t2) E{x(t2) x(t2)T}

rt
+ f (t1 - ) * b- E{w(r)

* x(t2)T} dT.

Because the current state x(t2) is independent of future inputs
w(r),

E{w(T) * x(t2)T} =0; T t2-

Therefore,

E{x(tl) . x(t2)T} = 4(t1 - t2) * E{x(t2) . X(t2)T}

RN(tl, t2)=cT*(tl - t2) - Rx(T2, t2) - c.

In the stationary case, RN(tl, t2) =RN (tl - t2) = RN(T):

RN (r) = CT 4?(r) * RX(O) - C.

For algebraic simplicity, assume a first-order, low-pass filter:

RN(r) = 4(T) - RX(°) *C2; RN(0) = RX(°) - C2

RN(T) = 4() - RN(O); T < °-

By symmetry, a similar result holds for r > 0; thus,

RN(T) = 1(jT1) - RN(0).
The autocorrelation function of myoelectric activity is

RM(T) = (ITI) -RN(0) - (F)2.
For convenience, we assume that RN(O) = 1. For a first-order,
low-pass filter with time constant Tc, '1(T) = eIT/c.
Thus,

RM(r) = e-ITilTc . O(F)2
or

RM(T) =p-a(F)2 where p=e l/c. (A.13)

Thus, the correlation coefficient p is a function of the time
separation of two samples ir and the "correlation time" of the
process Tc.

The power spectral density ofM(t) is defined by

SM(f)-J RM(r) e-i2ffft dT.A) ~

Using (A.l 1) and (A.12) in (A.14) yields

SM(f) = H(-f) - H(f) * Sw(f) - (F)2
where Sw (f) is the power spectral density of the input white
noise process, constant with respect to frequency, i.e.,
Sw(f) = Q. Because H(-f) is the complex conjugate of H(f),

SM(f) = IH(f)12 * Q *(F)2.
Thus, the power spectrum of myoelectric activity is a ratio of
polynomials in f2.
Assume N equally spaced samples of myoelectric activity

Ml ... MN; Mi = M(ti); t, < ... < ti < ... tN. Each of these
samples is Gaussian distributed (A.3) and the samples are serially
dependent. The likelihood function for the N samples is found
by repeated application of Bayes' rule:

P(Ml * * * MN/F)
=p(MNIMN 1, - * -. Ml,F)

* P(MN 1 IMN-2, *.* Ml, F) * p(MI IF)
and application of the first-order Markov property:

p(M1 . . MN/F)
=p(MNIMN 1, F) * P(MN- 1IMN-2, F)* p(Ml IF)

(A.15)

To find the transition likelihood function p(M1/Mi-1 , F), we
apply Bayes' rule and use (A.3):

= p(M,,M, /F)

Write

M Mi E{M}=0;

E{M
R

MT} RM(0) RM(At)]
LRM(-At) RM(O) J

or(F)2 [ ,] (F);
p1

At = sample spacing.

p(Mi Mi J1F) =p(M/F) - 2ir .

( -2pM1-I,.1 1M1/2exp [- M (F)-I .M]

| Y,(F) 1 1/2 =a(F)2 - p

MTK~(FY~l) M a(F)2(1 p2)

p(Mi- IF)= exp [1 M ]
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p(Mi/Mi -1, F) = / (/1
[1(_ - pMi _1)2] (A.16)

Let

TUs,i Mi - PMi-1
i-1~1j,

Thus,

(A.20)

Using (A.3), (A.15), and (A.16) in (A.2),

ln p (Ml * *MNF) =-N ln V/2 - Nln a(F)

- (N- 1) InVi/ 2 (F)2

rN (Mi-_PMi _1)2 +m21

{()[z~E ( I_p 2) 1]

(1-

d d
-nlp(Ml MN/F) = (rF)1' - [u(F)]

dF dF

As before,
d

u(F)1 *- [r(F)]| F 0
dF F=F

d
dF [In p(Ml ... MNIF)] 0sdF F=F

M=Mo

N[ (Mi pMi_-l)2f ](A 7

p0i2)(I _ -N=M ] A.8

To understand (A.18), recall thatM, was modeled as linearly
filltered white noise. The discrete time form of the filter is
obtained by assuming the whsite noise process to be sampled at
intervals of Avt, yielding a purely random sequence of steps
which are then input to the system of (A.9) and (A.10):

N(t+Ait)=CT -4¢(At) * *(t)+f CT.*1?(t-T)

*b * dr-* w(t).

For the first-order low-pass filter assumed above,

d( X *x(t)0+X (t); N(t)=x(t); = l/lTc

t

N(t+ At)-ex2tN(t)+ 1(e-'+ - 1) X* (A1

-x
Using p -e~F t (A.13) andMM(t) - u(F) N(t), we get

^1l{l[N 2~~~~~~12]}

Using (A.19), we see that

U2 =(M1-pM1..1)2 =1 -(F))22 2

Thus, (A.20) is a recursive formula defining a filter to restore
the sequence of samples of myoelectric activity to a purely
random or "white" sequence. The term involving p is a scaling
factor to correct for the variance of the purely random input
sequence, as can be seen by taking the expectation of (A.17):

E{u(F)2}
[N E{M2 - 2pM1M,1+p M,_JE {M2i]

I N[ u(F)2 - 2p - pa(F)2 + p2a(F)2 + (F)2]

(2-+ UV2]

(2 uP 2
= Or(F)2.= 1[ a(F) ( P' + a(F)2 ()

As no restriction was placed on At, to obtain the continuous-
time form of the estimator, we take At to zero in the limit,
with N = T/At. However, this limit is indeterminate and re-

quires the use of mean-square calculus [39] for its evaluation.
Instead, we argue by induction that as the effect of (A.20) is
to convert M, to a "white" sequence, the continuous-time
estimator requires a prewhitening or complementary filter, i.e.,
one whose frequency-response function is such that

H*(f) H(f)= 1

in order to convert the power spectrum of M(t) to that of a

white noise process. I

APPENDIX III
OPTIMAL MULTIPLE-CHANNEL MYOPROCESSOR,

UNCORRELATED SAMPLES
The activities of m channels of myoelectric activity are

denoted by

M(t) = [M1 (t) *Mm(t)] T.

The vector M(t) is Gaussian distributed with zero mean:

p{M(t)/F} = ________C() __(2Th)m121 C(F) 11/2
exp [- -. M(t)T C(F)j. M(t)

(A.19)
(A-21)
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where C(F) is the covariance matrix defined by

C(F) t E{M(t) * M(t)T}; E{M(t)} = 0.

An orthonormal transformation is performed on the vector
M(t):

u(t) = 4T -M(t)

dFdF(inp(u1 UN"/F)]

= u[u( 1 dr N(F)2 m 1,i NmmdF L = j=E
(A.22) As before,

where C(F) * 4= D * A (F); T* =L o iS a matrix of unit
eigenvectors. A(F) is a diagonal matrix of eigenvalues. The
transformation of (A.22) is linear; thus, the likelihood func-
tion for the vector u is Gaussian:

Ip(u/F) =
(2iT)mI2 A(F) 11/2

(A.23)exp[- .ur - A(F)-1 u]

The amplitude-modulation assumption is generalized
suming that

A(F) = A - c2(F); c1 = constant.

Now as in case I, assume N vector samples of myoo
activity spaced in time such that their serial correla
approximately zero. Orthonormal transformation yi
vector samples of uncorrelated activity, u1 ** UN.
Gaussian assumption, uncorrelatedness implies indepel
hence, the likelihood function for theN samples is

N
P(U1 ... UN/F) = p(uilF).

i=l

Using (A.23) and (A.24) in (A.2),

ln p(u -... uN/F) = ln (2nr)mI2 - ln A(F) 1/

2U A(F)- uil

Because A(F) is diagonal, its determinant and invers
simple forms:

A

IA(F)1 =JAI u(F)2m = [ Xi I*(F)2m

uT A(F)-1 * ui

= uT - A-' *Ui (-2a(F)1 Uij

.:.lnp(ui .UNIF)

= -N * In (27r)'/2 _ N *In |A 11/2 - N - m * In cr(i

1 N m u2
2a(F)2 Xi

by as-

electric
Ltion is
ields N
By the
ndence;

a(F)- dF [a(F)] A0°

*d

dF [lnFp(u ***UN/F)] =F

M=Mo

N m u=.
=(a(F)-2 -fN.m=O

i=l j=l J

F~t{[ 1E 1 U2jjl/2}
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